
N. Josuttis: P0883R0: Fixing Atomic Initialization

 1

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P0883R0
Date: 2018-02-12
Reply to: Nicolai Josuttis (nico@josuttis.de)
Audience: SG1, LEWG, LWG
Prev. Version:

Fixing Atomic Initialization, Rev0
Currently, std::atomic<> is the only type in C++ where list initialization does not work as expected. In
addition, default initialization does not do what people expect, causing nasty unexpected program
behavior. This paper proposes to fix that.

Motivation

Currently std::atomic<> is standardized to behave as follows:

std::atomic<int> x{}; // does NOT zero initialize

struct counter {
 int external_counters = 0;
 int count = 1;
};
std::atomic<counter> x; // does not initialize with 0 and 1
std::atomic<counter> y{}; // does not initialize with 0 and 1

The reason is that the spec currently requires not to initialize any value inside a default-initialized atomic:

32.6.1 Operations on atomic types [atomics.types.operations]:

atomic() noexcept = default;

2 Effects: Leaves the atomic object in an uninitialized state. [Note: These semantics ensure
compatibility with C. —end note]

This is even worse than undefined behavior; we require here not to do the right and expected behavior.
As Herb Sutter comment with a lot of agreement:

I have never seen the current behavior of deliberately failing to initialize an atomic<T> (to the
obvious default value of T{}) to be anything but a source of user surprise and a bug farm.

And the fact that list initialization in this case doesn’t work as everywhere else means that we cannot
simply teach C++ the way that using curly braces always default/zero initializes (the correct technical term
is “value initializes”). This unnecessarily creates confusion and blames C++ as a whole.

Why do we have the existing interface?

The reason for this unexpected behavior of std::atomic<> was to get “some planned future
compatibility to C” for a common subset of std::atomic<>. You should be able to use the aliases e.g.
atomic_int to write programs that are valid and have the same semantics in both C and C++.
See also:

 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html#DiscussInterop
 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3057.html

This is also important for pure C++ programs. As Olivier Giroux wrote in
http://lists.isocpp.org/lib/2017/12/4908.php:

Likely, C++ programmers rely on C compatibility more than they know because C++ code tends
to see the OS/platform headers directly. This may be my own brand of idealism, but I would like
to see more “atomic_int” and less “volatile int” in those headers in the future. I would not want to
turn away from that future.

This being said, it’s already the case that “atomic_int” is said to be equivalent to “atomic<int>” in a
C++ translation and so it already has more functionality. This is fine because there is still that

N. Josuttis: P0883R0: Fixing Atomic Initialization

 2

subset which can be used from both C and C++. I have no problem with initialization being in that
set of extra C++ functionality, even if the effect is that the compatible subset diverges further from
common C++ usage.

Nevertheless, the topic proposed here was already discussed as a design mistake:

 As part of the proposal of

 www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4130.pdf

Here are the details:

http://wiki.edg.com/bin/view/Wg21urbana-champaign/PadThyAtomicsNotes

 There is also a library issue:

https://cplusplus.github.io/LWG/issue2334

 And this thread:
http://lists.isocpp.org/lib/2017/12/4854.php

But so far all these discussion never resulted in a useful fix.

Was the intention of this interface successful?

The interesting thing is that at least two compilers don’t follow the spec and implement “The Right Thing”
(see http://lists.isocpp.org/lib/2017/12/4864.php).

And even worse: The C compatibility issue was not successful, as Herb Sutter wrote in
http://lists.isocpp.org/lib/2017/01/1611.php:

However, as others mentioned, I think this was motivated by having an atomic int shared between
C and C++ code. But I don't know that that even ended up being possible, or desirable. We also
tried to make threads be the same type in WG14 and WG21. My impression was that those
things didn't really work out, and if so perhaps we shouldn't be constrained by them.

and as Hans Boehm stated in http://lists.isocpp.org/lib/2017/01/1634.php:

Initially <atomic> was designed before WG14 came up with _Atomic. Lawrence and I started out
with directions from WG14 not to pursue something along the lines of _Atomic.

A subsequent imperfect, but probably good enough, compatibility proposal was to

#define _Atomic(T) std::atomic(T)

in C++. That (and some promotion to the global namespace) is essentially what happens on
Android if you include stdatomic.h from C++ code. (See e.g. the beginning of
https://github.com/android/platform_bionic/blob/master/libc/include/stdatomic.h. This also requires
that C _Atomic and C++ std::atomic share the same bit-level representation.)

All of this is clearly outside the domain of the C++ standard, but is nonetheless often useful, as
Jonathan points out.

and as Martin Sebor statet in http://lists.isocpp.org/lib/2017/12/4936.php:

In response to C11 DR 485, WG14 has decided at the April 3 meeting,
to acknowledge that the ATOMIC_VAR_INIT macro, besides being broken,
serves no useful purpose and should be avoided. The implication is
that C allowing atomics to be initialized just like objects of
the underlying non-atomic types, reflecting existing practice.

To that effect, the upcoming 2017 revision of C will be removing
the requirement to use macro to initialize atomic variables. Going
forward, WG14 intends to deprecate and ultimately remove the macro.

However Hans Bohm wrote in http://lists.isocpp.org/lib/2017/12/4943.php:

I'm actually optimistic here that the C compatibility story still matters, and is not a lost cause. We
actually do use stdatomic.h from C++ a fair amount, though the approach may be controversial.
But this is clearly not currently standard conforming. I still need to write a paper.

But in any case, I don't see a conflict here. Much of the status quo was predicated on the
assumption that atomics might contain a lock requiring nontrivial initialization. I think we've
generally given up on that, especially on the C side, and WG14 seems happy to require zero

N. Josuttis: P0883R0: Fixing Atomic Initialization

 3

initialization for atomic_int (or _Atomic(int) or _Atomic int). See http://www.open-
std.org/jtc1/sc22/wg14/www/docs/summary.htm#dr_422

The key point is here that we all seem to agree that a fix to the C++-specific API is fine.

How should we fix it?

In many C++ programs compatibility to C is not an issue at all. And at least in these cases C++ must do
the right thing.

Of course, we could provide some wording that when sharing an atomic between C and C++ the
initialization depends on which language calls the initialization, but I don’t any need for it, because what
we standardize with std::atomic<> is a feature that can only be used in C++ (templates are not available
in C at all). We might need a note at some place, but I see even no need for that.

If we use pure C++ to initialize an atomic object, I see no reason not to give it a useful initial value
via the constructor. And that’s all what is proposed here.

One different suggestion when discussing N4130 was:

C++'s atomic's ctor should call atomic_init, except for the T's where there exists a C-alias or if its
constructed with the Macro ATOMIC(T*) in C++.

I don’t think that this is enough, because C++ programmers will assume that any atomic type, even
atomic<int> is a valid C++ type and follows the fundamental design principles of C++. I don’t care about
any macro or so. I am talking about an initialization via templates which is not valid C.

So, no “compromise” for the mixed C/C++ case proposed here. This is just a fix for the pure C++ type
std::atomic<>. Users who want compatibility can follow the C guidance in either language.

noexcept?

Should the default constructor have a noexcept clause?

 It could always because it would be strange if trivially copyable types throw.
 It could conditionally, because his again is a wrapper case, which we already had a couple of

times in the library. And as a result the type should guarantee not to throw if the underlying type
does.

 It could follow N3279 to never throw conditional except in move or swap operations.

Usually I would follow the wrapper case argument, although it is not officially introduced yet (P0884
proposes a corresponding guideline).

An important argument for me is that we should have the same effect and guarantees for:

 std::atomic<T> x;

and:

 std::atomic<T> x{T{}};

Note that the latter might throw if the default constructor throws, because the exception is thrown before
the initialization starts.

So the further should only guarantee not to throw if the underlying default constructor gives this
guarantee.

Proposed Wording
(All against N4700)

Note this overrules the proposed solution of https://cplusplus.github.io/LWG/issue2334 to require default
initialization. It is the clear intention of this proposal to let the default constructor value initialize the
underlying object.

32.6 Class template atomic [atomics.types.generic]
In the synopsis change:

namespace std {
 template <class T> struct atomic {

N. Josuttis: P0883R0: Fixing Atomic Initialization

 4

 …
 constexpr atomic() noexcept(is_nothrow_default_constructible_v<T>)
 = default;
 …
 };
}

32.6.1 Operations on atomic types [atomics.types.operations]:

constexpr atomic() noexcept(is_nothrow_default_constructible_v<T>) = default;

Requires: is_default_constructible_v<T> is true. Otherwise the program is ill-formed.

Effects: Leaves the atomic object in an uninitialized state. [Note: These semantics ensure
compatibility with C. —end note]
Initializes the atomic object with T{}. Initialization is not an atomic operation (4.7).

32.6.2 Specializations for integers [atomics.types.int]
In the synopsis change:

namespace std {
 template <> struct atomic<integral> {
 …
 constexpr atomic() noexcept = default;
 …
 };
}

32.6.3 Partial specialization for pointers [atomics.types.pointer]
In the synopsis change:

namespace std {
 template <class T> struct atomic<T*> {
 …
 constexpr atomic() noexcept = default;
 …
 };
}

Note: A corresponding fix should apply to an upcoming atomic<floating-point> in case we have adopted
it..

Other Sources
https://cplusplus.github.io/LWG/issue2334

www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4130.pdf

https://developers.redhat.com/blog/2016/01/14/toward-a-better-use-of-c11-atomics-part-1/
https://developers.redhat.com/blog/2016/01/19/toward-a-better-use-of-c11-atomics-part-2/

Acknowledgements
Thanks to a lot of people who discussed the issue, proposed information and possible wording.
Especially: JF Bastien, Hans Boehm, Casey Carter, Peter Dimov, Arthur O'Dwyer, Olivier Giroux, Martin
Sebor, Herb Sutter, Jeffrey Yasskin (forgive me if I forgot you).

Feature Test Macro
The availability of this fix will make it a lot easier to program atomics safely. Thus, a feature macro is a
must. It is:

 __cpp_lib_atomic_value_initialization

