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abstract
At the November 2017 meeting in Albuquerque the members of the committee reaffirmed that stackful context switching
is important and that we should continue pursuing the technology.

This paper addresses concerns, questions and suggestions from the past meetings. The proposed API supersedes the
former proposals N3985,5 P0099R17 and P0534R3.8

Because of name clashes with coroutine from coroutine TS, execution context from executor proposals and continuation used
in the context of future::then(), fiber, as suggested by some committee members, has been chosen - filament, tasklet,
lightfiber or coop_task are possible alternative names.

The minimal API enables stackful context switching without the need for a scheduler. The API is suitable to act as building-
block for high-level constructs such as stackful coroutines as well as cooperative multitasking (aka user-land/green threads
that incorporate a scheduling facility).

A fiber is represented by the first-class object std::fiber.

control transfer mechanism
According to the literature,4 coroutine-like control-transfer operations can be distinguished into the concepts of symmetric
and asymmetric operations.

symmetric fiber A symmetric fiber provides a single control-transfer operation. This single operation requires that the
control is passed explicitly between the fibers.
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f1f1.resume() f2 f3 f4
f2.resume() f3.resume() f4.resume()

f1.resume()

1 fiber* pf1;
2 fiber f4{[&pf1]{
3 pf1->resume();
4 };
5 fiber f3{[&f4]{
6 f4.resume();
7 }};
8 fiber f2{[&f3]{
9 f3.resume();

10 }};
11 fiber f1{[&f2]{
12 f2.resume();
13 }};
14 pf1=&f1;
15 f1.resume();

In the pseudo-code example above, a chain of fibers is created.
Control is transferred to fiber f1 at line 15 and the lambda passed to constructor of f1 is entered. Control is transferred
from fiber f1 to f2 at line 12 and from f2 to f3 (line 9) and so on. Fiber f4 itself transfers control directly back to fiber f1
at line 3.

asymmetric fiber Two control-transfer operations are part of asymmetric fiber’s interface: one operation for resuming
(resume()) and one for suspending (suspend()) the fiber. The suspending operation returns control back to the calling
fiber.

f1f1.resume() f2 f3 f4

f2.resume()

self::suspend()

f3.resume()

self::suspend()

f4.resume()

self::suspend()

1 fiber f4{[]{
2 self::suspend();
3 };
4 fiber f3{[&f4]{
5 f4.resume();
6 self::suspend();
7 }};
8 fiber f2{[&f3]{
9 f3.resume();

10 self::suspend();
11 }};
12 fiber f1{[&f2]{
13 f2.resume();
14 self::suspend();
15 }};
16 f1.resume();

In the pseudo code above execution control is transferred to fiber f1 at line 16. Fiber f1 resumes fiber f2 at line 13 and so
on. At line 2 fiber f4 calls its suspend operation self::suspend(). Fiber f4 is suspended and f3 resumed. Inside the
lambda, f3 returns from f4.resume() and calls self::suspend() (line 6). Fiber f3 gets suspended while f2 will be
resumed and so on ...
The asymmetric version needs N-1 more fiber switches than the variant using symmetric fibers.
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While asymmetric fibers establish a caller-callee relationship (strongly coupled), symmetric fibers operate as siblings
(loosely coupled).

Symmetric fibers represent independent units of execution, making symmetric fibers a suitable mechanism for concurrent
programming. Additionally, constructs that produce sequences of values (generators) are easily constructed out of two
symmetric fibers (one represents the caller, the other the callee).

Asymmetric fibers incorporate additional fiber switches as shown in the pseudo code above. It is obvious that for a broad
range of use cases, asymmetric fibers are less efficient than their symmetric counterparts.
Additionally, the calling fiber must be kept alive until the called fiber terminates. Otherwise the call of suspend() will be
undefined behaviour (where to transfer execution control to?).

Symmetric fibers are more efficient, have fewer restrictions (no caller-callee relationship) and can be used to create
a wider set of applications (generators, cooperative multitasking, backtracking ...).

fiber as a first-class object
Because the symmetric control-transfer operation requires explicitly passing control between fibers, fibers must be ex-
pressed as first-class objects.

Fibers exposed as first-class objects can be passed to and returned from functions, assigned to variables or stored into
containers. With fibers as first-class objects, a program can explicitly control the flow of execution by suspending and
resuming fibers, enabling control to pass into a function at exactly the point where it previously suspended.

Symmetric control-transfer operations require fibers to be first-class objects. First-class objects can be returned from
functions, assigned to variables or stored into containers.

encapsulating the stack
Each fiber is associated with a stack and is responsible for managing the lifespan of its stack (allocation at construction,
deallocation when fiber terminates). The RAII-pattern∗ should apply.

Copying a fiber must not be permitted!
If a fiber were copyable, then its stack with all the objects allocated on it must be copied too. That presents two implement-
ation choices.

• One approach would be to capture sufficient metadata to permit object-by-object copying of stack contents. That
would require dramatically more runtime information than is presently available – and would take considerably
more overhead than a coder might expect. Naturally, any one move-only object on the stack would prohibit copying
the entire stack.

• The other approach would be a bytewise copy of the memory occupied by the stack. That would force undefined
behaviour if any stack objects were RAII-classes (managing a resource via RAII pattern). When the first of the fiber
copies terminates (unwinds its stack), the RAII class destructors will release their managed resources. When the
second copy terminates, the same destructors will try to doubly-release the same resources, leading to undefined
behavior.

A fiber API must:

• encapsulate the stack (hiding for user)

• manage lifespan of an explicitly-allocated stack: the stack gets deallocated when fiber goes out of scope

• prevent accidentally copying the stack

Class std::fiber must be moveable-only.

∗resource acquisition is initialisation
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invalidation at resumption
The framework must prevent the resumption of an already running or terminated (computation has finished) fiber.
Resuming an already running fiber will cause overwriting and corrupting the stack frames (note, the stack is not copyable).
Resuming a terminated fiber will cause undefined behaviour because the stack might already be unwound (objects
allocated on the stack were destroyed or the memory used as stack was already deallocated).
As a consequence each call of resume() will invalidate the std::fiber instance, i.e. no valid instance of std::fiber
represents the currently-running fiber.
Whether a std::fiber is valid or not can be tested with member function operator bool().
To make this more explicit, functions resume() and resume_with() are rvalue-reference qualified (binding only on
rvalues).
The essential points:

• regardless of the number of std::fiber declarations, exactly one std::fiber instance represents each suspended
fiber

• no std::fiber instance represents the currently-running fiber

Section solution: avoiding non-const global variables and undefined behaviour describes how an instance of std::fiber
is synthesized from the active fiber that suspends.

A fiber API must:

• prevent accidentally resuming a running fiber

• prevent accidentally resuming a terminated (computation has finished) fiber

• resume() and resume_with() are rvalue-reference qualified to bind on rvalues only

problem: avoiding non-const global variables and undefined behaviour
According to C++ core guidelines,9 non-const global variables should be avoided: they hide dependencies and make the
dependencies subject to unpredictable changes.
Global variables can be changed by assigning them indirectly using a pointer or by a function call. As a consequence, the
compiler can’t cache the value of a global variable in a register, degrading performance (unnecessary loads and stores to
global memory especially in performance critical loops).
Accessing a register is one to three orders of magnitude faster than accessing memory (depending on whether the cache
line is in cache and not invalidated by another core; and depending on whether the page is in the TLB).
The order of initialisation (and thus destruction) of static global variables is not defined, introducing additional problems
with static global variables.

A library designed to be used as building block by other higher-level frameworks should avoid introducing global
variables. If this API were specified in terms of internal global variables, no higher level layer could undo that: it
would be stuck with the global variables.

switch back to main() by returning Switching back to main() by returning from the fiber function has two
drawbacks: it requires an internal global variable pointing to the suspended main() and restricts the valid use cases.

int main() {
fiber f{[]{

...
// switch to ‘main()‘ only by returning

}};
f.resume(); // resume ‘f‘
return 0;

}

For instance the generator pattern is impossible because the only way for a fiber to transfer execution control back to
main() is to terminate. But this means that no way exists to transfer data (sequence of values) back and forth between a
fiber and main().

Switching to main() only by returning is impractical because it limits the applicability of fibers and requires an
internal global variable pointing to main().
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static member function returns active fiber P0099R06 introduced a static member function
(execution_context::current()) that returned an instance of the active fiber. This allows passing the active fiber m
(for instance representing main()) into the fiber l via lambda capture. This mechanism enables switching back and forth
between the fiber and main(), enabling a rich set of applications (for instance generators).

int main(){
int a;
fiber m=fiber::current(); // get active fiber
fiber f{[&]{

a=0;
int b=1;
for(;;){

m=m.resume(); // switch to ‘main()‘
int next=a+b;
a=b;
b=next;

}
}};
for(int j=0; j<10; ++j) {

f=f.resume(); // resume ‘f‘
std::cout << a << " ";

}
return 0;

}

But this solution requires an internal global variable pointing to the active fiber and some kind of reference counting.
Reference counting is needed because fiber::current() necessarily requires multiple instances of std::fiber for
the active fiber. Only when the last reference goes out of scope can the fiber be destroyed and its stack deallocated.

fiber f1=fiber::current();
fiber f2=fiber::current();
assert(f1==f2); // f1 and f2 point to the same (active) fiber

Additionally a static member function returning an instance of the active fiber would violate the protection requirements
of sections encapsulating the stack and invalidation at resumption. For instance you could accidentally attempt to resume
the active fiber by invoking resume().

fiber m=fiber::current();
m.resume(); // tries to resume active fiber == UB

A static member function returning the active fiber requires a reference counted global variable and does not prevent
accidentally attempting to resume the active fiber.

solution: avoiding non-const global variables and undefined behaviour

The avoid non-const global variables guideline has an important impact on the design of the fiber API!

synthesizing the suspended fiber The problem of global variables or the need for a static member function
returning the active fiber can be avoided by synthesizing the suspended fiber and passing it into the resumed fiber (as
parameter when the fiber is started the first time or returned from resume()).

1 void foo(){
2 fiber f{[](fiber&& m){
3 m=std::move(m).resume(); // switch to ‘foo()‘
4 m=std::move(m).resume(); // switch to ‘foo()‘
5 ...
6 }};
7 f=std::move(f).resume(); // start ‘f‘
8 f=std::move(f).resume(); // resume ‘f‘
9 }

In the pseudo-code above the fiber f is started by invoking its member function resume() at line 7. This operation
suspends foo, invalidates instance f and synthesizes a new fiber m that is passed as parameter to the lambda of f (line 2).
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Invoking m.resume() (line 3) suspends the lambda, invalidates m and synthesizes a fiber that is returned by f.resume()
at line 7. The synthesized fiber is assigned to f. Instance f now represents the suspended fiber running the lambda
(suspended at line 3). Control is transferred from line 3 (lambda) to line 7 (foo()).
Call f.resume() at line 8 invalidates f and suspends foo() again. A fiber representing the suspended foo() is syn-
thesized, returned from m.resume() and assigned to m at line 3. Control is transferred back to the lambda and instance m
represents the suspended foo().
Function foo() is resumed at line 4 by executing m.resume() so that control returns at line 8 and so on ...

Class symmetric_coroutine<>::yield_type from N39855 is not equivalent to the synthesized fiber.
symmetric_coroutine<>::yield_type does not represent the suspended context, instead it is a special representa-
tion of the same coroutine. Thus main() or the current thread’s entry-function can not be represented by yield_type
(see next section representing main() and thread’s entry-function as fiber).
Because symmetric_coroutine<>::yield_type() yields back to the starting point, e.g. invocation of
symmetric_coroutine<>::call_type::operator()(), both instances (call_type as well as yield_type) must
be preserved. Additionally the caller must be kept alive until the called coroutine terminates or UB happens at resumption.

This API is specified in terms of passing the suspended fiber. A higher level layer can hide that by using private
variables.

representing main() and thread’s entry-function as fiber As shown in the previous section a synthesized fiber
is created and passed into the resumed fiber as an instance of std::fiber.

int main(){
fiber f{[](fiber&& m){

m=std::move(m).resume(); // switch to ‘main()‘
...

}};
f=std::move(f).resume(); // resume ‘f‘
return 0;

}

The mechanism presented in this proposal describes switching between stacks: each fiber has its own stack. The stacks of
main() and explicitly-launched threads are not excluded; these can be used as targets too.
Thus every program can be considered to consist of fibers – some created by the OS (main() stack; each thread’s initial
stack) and some created explicitly by the code.
This is a nice feature because it allows (the stacks of) main() and each thread’s entry-function to be represented as fibers. A
fiber representing main() or a thread’s entry-function can be handled like an explicitly created fiber: it can passed to and
returned from functions or stored in a container.

In the code snippet above the suspended main() is represented by instance m and could be stored in containers or
managed just like f by a scheduling algorithm.

The proposed fiber API allows representing and handling main() and the current thread’s entry-function by an
instance of std::fiber in the same way as explicitly created fibers.

fiber returns (terminates) When a fiber returns (terminates), what should happen next? Which fiber should be
resumed next? The only way to avoid internal global variables that point to main() is to explicitly return a valid fiber
instance that will be resumed after the active fiber terminates.

1 int main(){
2 fiber f{[](fiber&& m){
3 return std::move(m); // resume ‘main()‘ by returning ‘m‘
4 }};
5 std::move(f).resume(); // resume ‘f‘
6 return 0;
7 }

In line 5 the fiber is started by invoking resume() on instance f. main() is suspended and an instance of type fiber is
synthesized and passed as parameter m to the lambda at line 2. The fiber terminates by returning m. Control is transferred
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to main() (returning from f.resume() at line 5) while fiber f is destroyed.

In a more advanced example another fiber is used as return value instead of the passed in synthesized fiber.

1 int main(){
2 fiber m;
3 fiber f1{[&](fiber&& f){
4 std::cout << "f1: entered first time" << std::endl;
5 assert(!f);
6 return std::move(m); // resume (main-)fiber that has started ‘f2‘
7 }};
8 fiber f2{[&](fiber&& f){
9 std::cout << "f2: entered first time" << std::endl;

10 m=std::move(f); // preserve ‘f‘ (== suspended main())
11 return std::move(f1);
12 }};
13 std::move(f2).resume();
14 std::cout << "main: done" << std::endl;
15 return 0;
16 }
17
18 output:
19 f2: entered first time
20 f1: entered first time
21 main: done

At line 13 fiber f2 is resumed and the lambda is entered at line 8. The synthesized fiber f (representing suspended main())
is passed as a parameter f and stored in m (captured by the lambda) at line 10. This is necessary in order to prevent
destructing f when the lambda returns. Fiber f2 uses f1, that was also captured by the lambda, as return value. Fiber f2
terminates while fiber f1 is resumed (entered the first time). The synthesized fiber f passed into the lambda at line 3 repres-
ents the terminated fiber f2 (e.g. the calling fiber). Thus instance f is invalid as the assert statement verifies at line 5. Fiber
f1 uses the captured fiber m as return value (line 6). Control is returned to main(), returning from f2.resume() at line 13.

The function passed to std::fiber’s constructor must have signature ‘fiber(fiber&&) ‘. Using std::fiber as
the return value from such a function avoids global variables.

returning synthesized fiber instance from resume() An instance of std::fiber remains invalid after return
from resume() or resume_with()– the synthesized fiber is returned, instead of implicitly updating the std::fiber
instance on which resume() was called.
If the std::fiber object were implicitly udpated, the fiber would change its identity because each fiber is associated with
a stack. Each stack contains a chain of function calls (call stack). If this association were implicitly modified, unexpected
behaviour happens.
The example below demonstrates the problem:

1 int main(){
2 fiber f1,f2,f3;
3 f3=fiber{[&](fiber&& f)->fiber{
4 f2=std::move(f);
5 for(;;){
6 std::cout << "f3 ";
7 std::move(f1).resume();
8 }
9 return {};

10 }};
11 f2=fiber{[&](fiber&& f)->fiber{
12 f1=std::move(f);
13 for(;;){
14 std::cout << "f2 ";
15 std::move(f3).resume();
16 }
17 return {};
18 }};
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19 f1=fiber{[&](fiber&& /*main*/)->fiber{
20 for(;;){
21 std::cout << "f1 ";
22 std::move(f2).resume();
23 }
24 return {};
25 }};
26 std::move(f1).resume();
27 return 0;
28 }
29
30 output:
31 1 2 3 1 3 1 3 1 3 ...

In this pseudo-code the std::fiber object is implicitly updated.
The example creates a circle of fibers: each fiber prints its name and resumes the next fiber (f1 -> f2 -> f3 -> f1 -> ...).
Fiber f1 is started at line 26. The synthesized fiber main passed to the resumed fiber is not used (control flow cycles
through the three fibers).∗ The for-loop prints the name f1 and resumes fiber f2. Inside f2’s for-loop the name is printed
and f3 is resumed. Fiber f3 resumes fiber f1 at line 7. Inside f1 control returns from f2.resume(). f1 loops, prints
out the name and invokes f2.resume(). But this time fiber f3 instead of f2 is resumed. This is caused by the fact the
instance f2 gets the synthesized fiber of f3 implicitly assigned. Remember that at line 7 fiber f3 gets suspended while f1
is resumed through f1.resume().

This problem can be solved by returning the synthesized fiber from resume() or resume_with().

int main(){
fiber f1,f2,f3;
f3=fiber{[&](fiber&& f)->fiber{

f2=std::move(f);
for(;;){

std::cout << "f3 ";
f2=std::move(f1).resume();

}
return {};

}};
f2=fiber{[&](fiber&& f)->fiber{

f1=std::move(f);
for(;;){

std::cout << "f2 ";
f1=std::move(f3).resume();

}
return {};

}};
f1=fiber{[&](fiber&& /*main*/)->fiber{

for(;;){
std::cout << "f1 ";
f3=std::move(f2).resume();

}
return {};

}};
std::move(f1).resume();
return 0;

}

output:
1 2 3 1 2 3 1 2 3 ...

In the example above the synthesized fiber returned by resume() is move-assigned to the invoking fiber instance (that
has resumed the current fiber).

∗The operating-system stack provided for main() or the current thread’s entry-function is not destroyed when the corresponding
std::fiber instance is destroyed.
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The synthesized fiber must be returned from resume() and resume_with() in order to prevent changing the
identity of the fiber.

If the overall control flow isn’t known, member function resume_with() (see section inject function into suspended
fiber) can be used to assign the synthesized std::fiber to the correct std::fiber instance (the caller).

class filament{
private:

fiber f_;

public:
...
void resume_next( filament& fila){

std::move(fila.f_).resume_with([this](fiber&& f)->fiber{
f_=std::move(f);
return {};

}
}

};

Member function resume_next() resumes the next filament passed as parameter. The active fiber invokes resume_with()
on the fiber aggregated by fila. The lambda captures this, the current fiber is suspended, a new std::fiber is syn-
thesized and passed as parameter f to the function (that’s the lambda) injected to the resumed fiber of fila.
Inside the lambda f is moved into the instance f_ aggregated by the filament that was suspended.∗

It is not necessary to know the overall control flow. It is sufficient to pass a reference/pointer of the caller (fiber that
gets suspended) to the resumed fiber that move-assigns the synthesized fiber to caller (updating the instance).

inject function into suspended fiber
Sometimes it is useful to inject a new function (for instance, to throw an exception or assign the synthesized fiber to
the caller as described in returning synthesized fiber instance from resume()) into a suspended fiber. For this purpose
resume_with(Fn&& fn) may be called, passing the function fn() to execute.
If the fiber represented by the std::fiber instance f has called a function suspender(), which has called resume()
and is now suspended, the call f.resume_with(fn) injects function fn() into fiber f as if suspender()’s resume()
call had directly called fn().

Like an entry-function passed to std::fiber, fn()must accept std::fiber&& and return std::fiber. The std::fiber
instance returned by fn() will, in turn, be returned to suspender() by resume().

Suppose that code running on the program’s main fiber calls resume() (line 12), thereby entering the first lambda shown
below. This is the point at which m is synthesized and passed into the lambda at line 2.
Suppose further that after doing some work (line 4), the lambda calls m.resume(), thereby switching back to the main
fiber. The lambda remains suspended in the call to m.resume() at line 5.
At line 18 the main fiber calls f.resume_with() where the passed lambda accepts fiber &&. That new lambda is
called on the fiber of the suspended lambda. It is as if the m.resume() call at line 8 directly called the second lambda.

The function passed to resume_with() has almost the same range of possibilities as any function called on the fiber
represented by f. Its special invocation matters when control leaves it in either of two ways:

1. If it throws an exception, that exception unwinds all previous stack entries in that fiber (such as the first lambda’s)
as well, back to a matching catch clause.†

2. If the function returns, the returned std::fiber instance is returned by the suspended m.resume() (or resume_with())
call.

1 int data = 0;
2 fiber f{[&data](fiber&& m){

∗ Boost.Fiber13 uses this pattern for resuming user-land threads. The injected lambda assigns the synthesized fiber to the caller and
unlocks a spinlock if provided or re-schedules the suspended user-land thread.

†As stated in exceptions, if there is no matching catch clause in that fiber, std::terminate() is called.
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3 std::cout << "f1: entered first time: " << data << std::endl;
4 data+=1;
5 m=std::move(m).resume();
6 std::cout << "f1: entered second time: " << data << std::endl;
7 data+=1;
8 m=std::move(m).resume();
9 std::cout << "f1: entered third time: " << data << std::endl;

10 return std::move(m);
11 }};
12 f=std::move(f).resume();
13 std::cout << "f1: returned first time: " << data << std::endl;
14 data+=1;
15 f=std::move(f).resume();
16 std::cout << "f1: returned second time: " << data << std::endl;
17 data+=1;
18 f=std::move(f).resume_with([&data](fiber&& m){
19 std::cout << "f2: entered: " << data << std::endl;
20 data=-1;
21 return std::move(m);
22 });
23 std::cout << "f1: returned third time" << std::endl;
24
25 output:
26 f1: entered first time: 0
27 f1: returned first time: 1
28 f1: entered second time: 2
29 f1: returned second time: 3
30 f2: entered: 4
31 f1: entered third time: -1
32 f1: returned third time

The f.resume_with(<lambda>) call at line 18 passes control to the second lambda on the fiber of the first lambda.

As usual, resume_with() synthesizes a std::fiber instance representing the calling fiber, passed into the lambda as
m. This particular lambda returns m unchanged at line 21; thus that m instance is returned by the resume() call at line 8.

Finally, the first lambda returns at line 10 the m variable updated at line 8, switching back to the main fiber.

Member function resume_with() allows you to inject a function into suspended fiber.

passing data between fibers
Data can be transferred between two fibers via global pointer, calling wrapper (like std::bind) or lambda capture.

1 int i=1;
2 std::fiber lambda{[&i](fiber&& caller){
3 std::cout << "inside lambda,i==" << i << std::endl;
4 i+=1;
5 caller=std::move(caller).resume();
6 return std::move(caller);
7 }};
8 lambda=std::move(lambda).resume();
9 std::cout << "i==" << i << std::endl;

10 lambda=std::move(lambda).resume();
11
12 output:
13 inside lambda,i==1
14 i==2

The resume() call at line 8 enters the lambda and passes 1 into the new fiber. The value is incremented by one, as shown
at line 4. The expression caller.resume() at line 5 resumes the original context (represented within the lambda by
caller).
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The call to lambda.resume() at line 10 resumes the lambda, returning from the caller.resume() call at line 5. The
std::fiber instance caller invalidated by the resume() call at line 5 is replaced with the new instance returned by
that same resume() call.
Finally the lambda returns (the updated) caller at line 6, terminating its context.

Since the updated caller represents the fiber suspended by the call at line 10, control returns to main().

However, since context lambda has now terminated, the updated lambda is invalid. Its operator bool() returns
false; its operator!() returns true.

Using lambda capture is the preferred way to transfer data between two fibers; global pointer and calling wrapper
(like std::bind) are alternatives.

termination
There are a few different ways to terminate a given fiber without terminating the whole process, or engaging undefined
behavior.

Any of the following will gracefully terminate a fiber:

• Cause its entry-functionto return a valid fiber.

• From within the fiber you wish to terminate, call std::unwind_fiber()with a valid fiber. std::unwind_fiber()
will trigger a specific action that unwinds the stack (walking the stack and destroying automatic variables in reverse
order of construction) ∗.

• Call fiber::resume_with(unwind_fiber). This is what ~fiber() does. Since std::unwind_fiber()
accepts a std::fiber, and since resume_with() synthesizes a std::fiber representing its caller and passes it
to the subject function, this terminates the fiber referenced by the original std::fiber instance and switches back
to the caller.

• Engage ~fiber(): switch to some other fiber, which will receive a std::fiber instance representing the current
fiber. Make that other fiber destroy the received std::fiber instance.

(However, since the operating system allocates the stack for main() and for a thread’s entry-function, of course there is
no implicit top-level stack frame, no implicit catch (std::unwind_exception). In a conforming implementation,
returning from a thread’s entry-function may terminate all fibers on that thread. Returning from main() may terminate the
whole process.)
When an explicitly-launched fiber’s entry-function returns a valid std::fiber instance, that fiber is terminated. Control
switches to the fiber indicated by the returned std::fiber instance.

Returning an invalid std::fiber instance (operator bool() returns false) invokes undefined behavior.

If the entry-function returns the same std::fiber instance it was originally passed (or rather, the std::fiber instance
most recently returned by resume() or resume_with()), control returns to the fiber that most recently resumed the
running fiber. However, the entry-function may return (switch to) any reachable valid std::fiber instance.

Calling resume() means: “Please switch to the indicated fiber; I am suspending; please resume me later.”

Returning a particular std::fiber means: “Please switch to the indicated fiber; and by the way, I am done.”

exceptions
In general, if an uncaught exception escapes from the entry-function, std::terminate is called.
Of course, no try/catch block is needed if neither entry-function nor anything it calls throws exceptions.

stack destruction
On construction of a fiber a stack is allocated. If the entry-function returns, the stack will be destroyed. If the function has
not yet returned and the (destructor) of the std::fiber instance representing that context is called, the stack will be
unwound and destroyed.

∗for instance the __Unwind*-API part of the SYSV ABI could be utilized
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Consider a running fiber f2 that destroys the std::fiber instance representing f1.

f1’s destructor, running on f2, implicitly calls member-function resume_with(), passing std::unwind_fiber() as
argument. Fiber f1will be temporarily resumed and std::unwind_fiber() is invoked. Function std::unwind_fiber()
binds an instance of std::fiber that represents f2, then triggers a specific action that unwinds f1’s stack (walking
the stack and destroying automatic variables in reverse order of construction)∗. The first frame on f1’s stack, the one
created by std::fiber’s constructor, extracts the bound std::fiber representing f2 and terminates f1 by returning
f2. Control is returned to f2 and f1’s stack gets deallocated.

The StackAllocator’s deallocate operation runs on the fiber that invoked ~fiber(), in this case f2.

The stack on which main() is executed, as well as the stack implicitly created by std::thread’s constructor, is allocated
by the operating system. Such stacks are recognized by std::fiber, and are not deallocated by its destructor.

stack allocators
Stack allocators are used to create stacks and might implement arbitrary stack strategies. For instance, a stack allocator
might append a guard page at the end of the stack, or cache stacks for reuse, or create stacks that grow on demand.

Because stack allocators are provided by the implementation, and are only used as parameters of the constructor, the
StackAllocator concept is an implementation detail, used only by the internal mechanisms of the implementation. Different
implementations might use different StackAllocator concepts.

However, when an implementation provides a stack allocator matching one of the descriptions below, it should use the
specified name.

Possible types of stack allocators:

• protected_fixedsize: The constructor accepts a size_t parameter. This stack allocator constructs a contiguous
stack of specified size, appending a guard page at the end to protect against overflow. If the guard page is accessed
(read or write operation), a segmentation fault/access violation is generated by the operating system.

• fixedsize: The constructor accepts a size_t parameter. This stack allocator constructs a contiguous stack of
specified size. In contrast to protected_fixedsize, it does not append a guard page. The memory is simply
managed by std::malloc() and std::free(), avoiding kernel involvement.

• segmented: The constructor accepts a size_t parameter. This stack allocator creates a segmented stack18 with the
specified initial size, which grows on demand.†

It is expected that the StackAllocator’s allocation operation will run in the context of the std::fiber constructor, and
that the StackAllocator’s deallocation operation will run on the fiber calling ~fiber() (after control returns from the
destroyed fiber). No special constraints need apply to either operation.

fiber as building block for higher-level frameworks
A low-level API enables a rich set of higher-level frameworks that provide specific syntaxes/semantics suitable for specific
domains. As an example, the following four frameworks are based on the low-level fiber switching API of Boost.Context11

(implements the API of this proposal).

Boost.Coroutine212 implements asymmetric coroutines coroutine<>::push_type and coroutine<>::pull_type,
providing a unidirectional transfer of data. These stackful coroutines are only used in pairs. When coroutine<>::push_type
is explicitly instantiated, coroutine<>::pull_type is synthesized and passed as parameter into the coroutine func-
tion. In the example below, coroutine<>::push_type (variable writer) provides the resume operation, while
coroutine<>::pull_type (variable in) represents the suspend operation. Inside the lambda,in.get() pulls strings
provided by coroutine<>::push_type’s output iterator support.

struct FinalEOL{ ~FinalEOL(){ std::cout << std::endl; } };
std::vector<std::string> words{

"peas", "porridge", "hot", "peas",
"porridge", "cold", "peas", "porridge",

∗for instance the __Unwind*-API part of the SYSV ABI could be utilized
†An implementation of the segmented StackAllocator necessarily interacts with the C++ runtime. For instance, with gcc, the

Boost.Context11 library invokes the__splitstack_makecontext() and__splitstack_releasecontext() intrinsic
functions.19
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"in", "the", "pot", "nine",
"days", "old" };

int num=5,width=15;
boost::coroutines2::coroutine<std::string>::push_type writer{

[&](boost::coroutines2::coroutine<std::string>::pull_type& in){
FinalEOL eol;
for (;;){

for (int i=0; i<num; ++i){
if (!in){

return;
}
std::cout << std::setw(width) << in.get();
in();

}
std::cout << std::endl;

}
}};

std::copy(std::begin(words), std::end(words), std::begin(writer));

Synca17 (by Grigory Demchenko) is a small, efficient library to perform asynchronous operations in synchronous manner.
The main features are a GO-like syntax, support for transferring execution context explicitly between different thread
pools or schedulers (portals/teleports) and asynchronous network support.

int fibo(int v){
if (v<2) return v;
int v1,v2;
Waiter()

.go([v,&v1]{ v1=fibo(v-1); })

.go([v,&v2]{ v2=fibo(v-2); })

.wait();
return v1+v2;

}

The code itself looks like synchronous invocations while internally it uses asynchronous scheduling.

Boost.Fiber 13 implements user-land threads and combines fibers with schedulers (scheduler-algorithms are customiza-
tion points). The API is modelled after the std::thread-API and contains objects like future, mutex,
condition_variable ...

boost::fibers::unbuffered_channel<unsigned int> chan;
boost::fibers::fiber f1{[&chan]{

chan.push(1);
chan.push(1);
chan.push(2);
chan.push(3);
chan.push(5);
chan.push(8);
chan.push(12);
chan.close();

}};
boost::fibers::fiber f2{[&chan]{

for (unsigned int value: chan) {
std::cout << value << " ";

}
std::cout << std::endl;

}};
f1.join();
f2.join();

Facebook’s folly::fibers16 is an asynchronous C++ framework using user-land threads for parallelism. In contrast to
Boost.Fiber, folly::fibers exposes the scheduler and permits integration with various event dispatching libraries.
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folly::EventBase ev_base;
auto& fiber_manager=folly::fibers::getFiberManager(ev_base);
folly::fibers::Baton baton;
fiber_manager.addTask([&]{

std::cout << "task 1: start" << std::endl;
baton.wait();
std::cout << "task 1: after baton.wait()" << std::endl;

});
fiber_manager.addTask([&]{

std::cout << "task 2: start" << std::endl;
baton.post();
std::cout << "task 2: after baton.post()" << std::endl;

});
ev_base.loop();

folly::fibers is used in many critical applications at Facebook for instance in mcrouter14 and some other Facebook services/lib-
raries like ServiceRouter (routing framework for Thrift15), Node API (graph ORM API for graph databases) ...

As shown in this section a low-level API can act as building block for a rich set of high-level frameworks designed
for specific application domains that require different aspects of design, semantics and syntax.

interaction with STL algorithms
In the following example STL algorithm std::generator and fiber g generate a sequence of Fibonacci numbers and
store them into std::vector v.

int a;
std::fiber g{[&a](std::fiber&& m){

a=0;
int b=1;
for(;;){

m=std::move(m).resume();
int next=a+b;
a=b;
b=next;

}
return std::move(m);

}};
std::vector<int> v(10);
std::generate(v.begin(), v.end(), [&a,&g]() mutable {

g=std::move(g).resume();
return a;

});
std::cout << "v: ";
for (auto i: v) {

std::cout << i << " ";
}
std::cout << "\n";

output: v: 0 1 1 2 3 5 8 13 21 34

The proposed fiber API does not require modifications of the STL and can be used together with existing STL
algorithms.

possible implementation strategies

This proposal does N O T seek to standardize any particular implementation or impose any specific calling con-
vention!
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Modern micro-processors are register machines; the content of processor registers represent the execution context of the
program at a given point in time.
Operating systems maintain for each process all relevant data (execution context, other hardware registers etc.) in the
process table. The operating system’s CPU scheduler periodically suspends and resumes processes in order to share CPU
time between multiple processes. When a process is suspended, its execution context (processor registers, instruction
pointer, stack pointer, ...) is stored in the associated process table entry. On resumption, the CPU scheduler loads the
execution context into the CPU and the process continues execution.
The CPU scheduler does a full context switch. Besides preserving the execution context (complete CPU state), the cache
must be invalidated and the memory map modified.
A kernel-level context switch is several orders of magnitude slower than a context switch at user-level.3

hypothetical fiber preserving complete CPU state This strategy tries to preserve the complete CPU state, e.g. all
CPU registers. This requires that the implementation identifies the concrete micro-processor type and supported processor
features. For instance the x86-architecture has several flavours of extensions such as MMX, SSE1-4, AVX1-2, AVX-512.
Depending on the detected processor features, implementations of certain functionality must be switched on or off. The
CPU scheduler in the operating system uses such information for context switching between processes.
A fiber implementation using this strategy requires such a detection mechanism too (equivalent to swapper/system_32()
in the Linux kernel).
Aside from the complexity of such detection mechanisms, preserving the complete CPU state for each fiber switch is
expensive.

A context switch facility that preserves the complete CPU state like an operating system is possible but impractical
for user-land.

fiber switch using the calling convention For std::fiber, not all registers need be preserved because the
context switch is effected by a visible function call. It need not be completely transparent like an operating-system context
switch; it only needs to be as transparent as a call to any other function. The calling convention – the part of the ABI that
specifies how a function’s arguments and return values are passed – determines which subset of micro-processor registers
must be preserved by the called subroutine.

The calling convention10 of SYSV ABI for x86_64 architecture determines that general purpose registers R12, R13, R14,
R15, RBX and RBP must be preserved by the sub-routine - the first arguments are passed to functions via RDI, RSI, RDX,
RCX, R8 and R9 and return values are stored in RAX, RDX.
So on that platform, the resume() implementation preserves the general purpose registers (R12-R15, RBX and RBP)
specified by the calling convention. In addition, the stack pointer and instruction pointer are preserved and exchanged
too – thus, from the point of view of calling code, resume() behaves like an ordinary function call.
In other words, resume() acts on the level of a simple function invocation – with the same performance characteristics (in
terms of CPU cycles).

This technique is used in Boost.Context11 which acts as building block for folly::fibers. The folly::fibers framework itself is
the basis of many critical applications at Facebook, such as mcrouter14 and some other Facebook services/libraries like
ServiceRouter (routing framework for Thrift15), Node API (graph ORM API for graph databases) ...

in-place substitution at compile time During code generation, a compiler-based implementation could inject the
assembler code responsible for the fiber switch directly into each function that calls resume(). That would save an extra
indirection (JMP + PUSH/MOV of certain registers used to invoke resume()).

CPU state at the stack Because each fiber must preserve CPU registers at suspension and load those registers at
resumption, some storage is required.
Instead of allocating extra memory for each fiber, an implementation can use the stack by simply advancing the stack
pointer at suspension and pushing the CPU registers (CPU state) onto the stack owned by the suspending fiber. When the
fiber is resumed, the values are popped from the stack and loaded into the appropriate registers.

This strategy works because only a running fiber creates new stack frames (moving the stack pointer). While a fiber is
suspended, it is safe to keep the CPU state on its stack.

Using the stack as storage for the CPU state has the additional advantage that std::fiber must only contain a pointer to
the stack location: its memory footprint can be that of a pointer.
Section synthesizing the suspended fiber describes how global variables are avoided by synthesizing a std::fiber from
the active fiber (execution context) and passing this synthesized fiber (representing the now-suspended fiber) into the
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resumed fiber. Using the stack as storage makes this mechanism very easy to implement.∗ Inside resume() the code
pushes the relevant CPU registers onto the stack, and from the resulting stack address creates a new std::fiber. This
instance is then passed (or returned) into the resumed fiber (see synthesizing the suspended fiber).

Using the active fiber’s stack as storage for the CPU state is efficient because no additional allocations or dealloca-
tions are required.

fiber switch on architectures with register window
The implementation of fiber switch is possible – many libc implementations still provide the ucontext-API (swapcontext()
and related functions)† for architectures using a register window (such as SPARC). The implementation of swapcontext()
could be used as blueprint for a fiber implementation.

how fast is a fiber switch
A fiber switch takes 11 CPU cycles on a x86_64-Linux system‡ using an implementation based on the strategy described in
fiber switch using the calling convention (implemented in Boost.Context,11 branch fiber).

interaction with accelerators
For many core devices several programming models, such as OpenACC, CUDA, OpenCL etc., have been developed
targeting host-directed execution using an attached or integrated accelerator. The CPU executes the main program while
controlling the activity of the accelerator. Accelerator devices typically provide capabilities for efficient vector processing§.
Usually the host-directed execution uses computation offloading that permits executing computationally intensive work
on a separate device (accelerator).1

For instance CUDA devices use a command buffer to establish communication between host and device. The host puts
commands (op-codes) into the command buffer and the device process them asynchronously.2

It is obvious that a fiber switch does not interact with host-directed device-offloading. A fiber switch works like a function
call (see fiber switch using the calling convention).

multi-threading environment
std::fiber is TLS-agnostic - best practice related to TLS applies to fibers too (see P0772R0.)
Migration between threads is forbidden. A std::fiber may only be resumed on the std::thread on which it was
launched.

acknowledgment
I’d like to thank Andrii Grynenko, Detlef Vollmann, Geoffrey Romer, Grigory Demchenko, Lee Howes, Nat Goodspeed
and Yedidya Feldblum.

∗The implementation of Boost.Context11 utilizes this technique.
†ucontext was removed from POSIX standard by POSIX.1-2008
‡Intel XEON E5 2620v4 2.2GHz
§warp on CUDA devices, wavefront on AMD GPUs, 512-bit SIMD on Intel Xeon Phi
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appendix: API

class fiber {
public:

fiber() noexcept;

template<typename Fn>
fiber(Fn&& fn);

template<typename StackAlloc, typename Fn>
fiber(std::allocator_arg_t, StackAlloc&& salloc, Fn&& fn);

~fiber();

fiber(fiber&& other) noexcept;
fiber& operator=(fiber&& other) noexcept;
fiber(const fiber& other) noexcept = delete;
fiber& operator=(const fiber& other) noexcept = delete;

fiber resume() &&;
template<typename Fn>
fiber resume_with(Fn&& fn) &&;

explicit operator bool() const noexcept;
bool operator!() const noexcept;
bool operator==(const fiber& other) const noexcept;
bool operator!=(const fibert& other) const noexcept;
bool operator<(const fiber& other) const noexcept;
bool operator>(const fiber& other) const noexcept;
bool operator<=(const fiber& other) const noexcept;
bool operator>=(const fiber& other) const noexcept;
void swap(fiber& other) noexcept;

};

member functions

(constructor) constructs new fiber

fiber()noexcept (1)

template<typename Fn>
fiber(Fn&& fn) (2)

template<typename StackAlloc, typename Fn>
fiber(std::allocator_arg_t, StackAlloc&& salloc, Fn&& fn) (3)

fiber(fiber&& other)noexcept (4)

fiber(const fiber& other)=delete (5)

1) this constructor instantiates an invalid std::fiber. Its operator bool() returns false; its operator!() returns
true.

2) takes a callable (function, lambda, object with operator()()) as argument. The callable must have signature as
described in solution: avoiding non-const global variables and undefined behaviour. The stack is constructed using
either fixedsize or segmented (see Stack allocators). An implementation may infer which of these best suits the
code in fn. If it cannot infer, fixedsize will be used.

3) takes a callable as argument, requirements as for (2). The stack is constructed using salloc (see Stack allocators).∗

4) moves underlying state to new std::fiber

∗This constructor, along with the Stack allocators section, is an optional part of the proposal. It might be that implementations can
reliably infer the optimal stack representation.
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5) copy constructor deleted

Notes

The entry-function fn is not immediately entered. The stack and any other necessary resources are created on construction,
but fn is not entered until resume() or resume_with() is called.

The entry-function fn passed to std::fiber will be passed a synthesized std::fiber instance representing the
suspended caller of resume().

The function fn passed to resume_with() will be passed a synthesized std::fiber instance representing the
suspended caller of resume_with().

(destructor) destroys a fiber

~fiber() (1)

1) destroys a std::fiber instance. If this instance represents a fiber of execution (operator bool() returns true),
then the fiber of execution is destroyed too.

operator= moves the fiber object

fiber& operator=(fiber&& other)noexcept (1)

fiber& operator=(const fiber& other)=delete (2)

1) assigns the state of other to *this using move semantics

2) copy assignment operator deleted

Parameters

other another fiber to assign to this object

Return value

*this

resume() resumes a fiber

fiber resume()&& (1)

template<typename Fn>
fiber resume_with(Fn&& fn)&& (2)

1) suspends the active fiber, resumes fiber *this

2) suspends the active fiber, resumes fiber *this but calls fn() in the resumed fiber (as if called by the suspended
function)

Parameters

fn function injected into resumed fiber

Return value

fiber the returned instance represents the fiber that has been suspended in order to resume the current fiber

Exceptions

1) resume() or resume_with() might throw any exception if, while suspended:
• some other fiber calls resume_with() to resume this suspended fiber
• the function fn passed to resume_with()– or some function called by fn – throws an exception

2) Any exception thrown by the function fn passed to resume_with(), or any function called by fn, is thrown in the
fiber referenced by *this rather than in the fiber of the caller of resume_with().

Preconditions

1) *this represents a valid fiber (operator bool() returns true)

2) the current std::thread is the same as the thread on which *this was originally launched
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Postcondition
1) *this is invalidated (operator bool() returns false)
Notes
resume() preserves the execution context of the calling fiber. Those data are restored if the calling fiber is resumed.
A suspended fiber can be destroyed. Its resources will be cleaned up at that time.
The returned fiber indicates via operator bool() whether the previous active fiber has terminated (returned from
entry-function).
Because resume() invalidates the instance on which it is called, no valid std::fiber instance ever represents the currently-
running fiber. In order to express the invalidation explicitly, resume() and resume_with() are rvalue-reference qualified.
This means that both functions can only be invoked on rvalues.
When calling resume(), it is conventional to replace the newly-invalidated instance – the instance on which resume()
was called – with the new instance returned by that resume() call. This helps to avoid inadvertent calls to resume() on
the old, invalidated instance.
An injected function fn() must accept std::fiber&& and return std::fiber. The fiber instance returned by fn() is,
in turn, used as the return value for the suspended function: resume() or resume_with().

operator bool test whether fiber is valid

explicit operator bool()const noexcept (1)

1) returns true if *this represents a fiber of execution, false otherwise.

Notes
A std::fiber instance might not represent a valid fiber for any of a number of reasons.

• It might have been default-constructed.
• It might have been assigned to another instance, or passed into a function.
std::fiber instances are move-only.

• It might already have been resumed – calling resume() invalidates the instance.
• The entry-function might have voluntarily terminated the fiber by returning.

The essential points:
• Regardless of the number of std::fiber declarations, exactly one
std::fiber instance represents each suspended fiber.

• No std::fiber instance represents the currently-running fiber.

operator! test whether fiber is invalid

bool operator!()const noexcept (1)

1) returns false if *this represents a valid fiber, true otherwise.

Notes
See Notes for operator bool().

(comparisons) establish an arbitrary total ordering for std::fiber instances

bool operator==(const fiber& other)const noexcept (1)

bool operator!=(const fiber& other)const noexcept (1)

bool operator<(const fiber& other)const noexcept (2)

bool operator>(const fiber& other)const noexcept (2)

bool operator<=(const fiber& other)const noexcept (2)

bool operator>=(const fiber& other)const noexcept (2)

1) Every invalid std::fiber instance compares equal to every other invalid instance. But because the running fiber is
never represented by a valid std::fiber instance, and because every suspended fiber is represented by exactly
one valid instance, no valid instance can ever compare equal to any other valid instance.

2) These comparisons establish an arbitrary total ordering of std::fiber instances, for example to store in ordered
containers. (However, key lookup is meaningless, since you cannot construct a search key that would compare equal
to any entry.) There is no significance to the relative order of two instances.
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swap swaps two std::fiber instances

void swap(fiber& other)noexcept (1)

1) Exchanges the state of *this with other.

std::unwind_fiber() terminate the current running fiber, switching to the fiber represented by the passed std::fiber.
This is like returning that std::fiber from the entry-function, but may be called from any function on that fiber.

void unwind_fiber(fiber&& other) (1)

1) Binds the passed std::fiber and triggers a specific action that unwinds the stack (walking the stack and destroying
automatic variables in reverse order of construction) ∗. The running fiber’s first stack entry extracts the bound
std::fiber and terminates the current fiber by returning that std::fiber.

Parameters

other the std::fiber to which to switch once the current fiber has terminated

Preconditions

1) other must be valid (operator bool() returns true)

Return value

1) None: std::unwind_fiber() does not return

Stack allocators are the means by which stacks with non-default properties may be requested by the caller of
std::fiber’s constructor. The stack allocator concept is implementation-dependent; the means by which an implement-
ation’s stack allocators communicate with std::fiber’s constructor is unspecified.

An implementation may provide zero or more stack allocators. However, a stack allocator with semantics matching any of
the following must use the corresponding name.

protected_fixedsize The constructor accepts a size_t parameter. This stack allocator constructs a contiguous stack of
specified size, appending a guard page at the end to protect against overflow. If the guard page is accessed (read or
write operation), a segmentation fault/access violation is generated by the operating system.

fixedsize The constructor accepts a size_t parameter. This stack allocator constructs a contiguous stack of specified
size. In contrast to protected_fixedsize, it does not append a guard page. The memory is simply managed by
std::malloc() and std::free(), avoiding kernel involvement.

segmented The constructor accepts a size_t parameter. This stack allocator creates a segmented stack18 with the
specified initial size, which grows on demand.
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