

Document number: P0566R4
Date: 20180211 (pre-Jacksonville)
Project: Programming Language C++, WG21, SG1,SG14, LEWG, LWG
Authors: Michael Wong, Maged M. Michael, Paul McKenney, Geoffrey Romer, Andrew Hunter,
Arthur O'Dwyer, David S. Hollman, JF Bastien, Hans Boehm, David Goldblatt
Email: ​michael@codeplay.com​, ​maged.michael@acm.org​, ​paulmck@linux.vnet.ibm.com​,
gromer@google.com​, ​ahh@google.com​, ​arthur.j.odwyer@gmail.com​, ​dshollm@sandia.gov​,
jfbastien@apple.com​, ​hboehm@google.com​, ​davidtgoldblatt@gmail.com
Reply to: michael@codeplay.com
​

Proposed Wording for Concurrent Data
Structures: Hazard Pointer and
Read-Copy-Update (RCU)

1 Introduction 1

2 History/Changes from Previous Release 2

3 Guidance to Editor 4

4 Proposed wording 4

1 Introduction

This is proposed wording for Hazard Pointers [P0233] and Read-Copy-Update [P0461]. Both
are techniques for safe deferred resource reclamation for optimistic concurrency, useful for
lock-free data structures. Both have been progressing steadily through SG1 based on years of
implementation by the authors, and are in wide use in MongoDB (for Hazard Pointers) and
Linux OS (RCU).

We decided to do both papers' wording together to illustrate their close relationship, and similar
design structure, while hopefully making it easier for the reader to review together for this first
presentation. They can be split on request or on subsequent presentation.

This wording is based on n4618 draft [N4618]

mailto:michael@codeplay.com
mailto:maged.michael@acm.org
mailto:paulmck@linux.vnet.ibm.com
mailto:gromer@google.com
mailto:ahh@google.com
mailto:arthur.j.odwyer@gmail.com
mailto:dshollm@sandia.gov
mailto:jfbastien@apple.com
mailto:hboehm@google.com
mailto:davidtgoldblatt@gmail.com

2 History/Changes from Previous Release

2017-11-08 [P0566R4] this version pre-JAX meeting
● Full RCU wording review was done at this meeting. A repeat HP wording done at this

meeting for any small design deltas, although HP was approved to move to LEWG in
Toronto

● Three related bugzillas tracking this:
○ 382​ C++ Concurre parallel@lists.isocpp.org CONF ---​ ​Proposed Wording for

Concurrent Data Structures: Hazard Pointer and Read-Copy-Update (RCU)​ ​Tue
23:01

○ 291​ C++ Library fraggamuffin@gmail.com SG_R ---​ ​Hazard Pointers​ ​2017-07-06
○ 376​ C++ Concurre maged.michael@acm.org SG_R ---​ ​Hazard Pointers​ ​Mon

22:58
● Rewrote the RCU preamble to give a better introduction to RCU’s concepts and use

cases, including adding example code.
● Updated the ordering guarantees to be more like the C++ memory model and less like

the Linux kernel memory model. (There is still some refining that needs to be done, and
this is waiting on an RCU litmus-test paper by Paul E. McKenney.)

● Removed the ​lock​ and ​unlock​ member functions from the ​rcu_reader​ class. These
member functions are not needed because ​rcu_reader​ directly provides the needed
RAII functionality.

● Numerous additional wording changes were made, none of which represent a change to
the design, implementation, or API.

● Added some authors.
● Hazard pointer wording changes:

○ Added ​hazptr_cleanup()​ free function, a stronger replacement for
hazptr_barrier()​. There was no consensus in Albuquerque on the
requirements for a such a function. The decision on whether to provide one and
its semantics was left to the authors.

○ Significant rewrite of the wording for ​hazptr_obj_base::retire()​ to address
the issues with memory ordering raised in Toronto.

○ Rewrite of the wording for ​hazptr_holder::try_protect()​ for clarity.
○ Other minor editorial changes and corrections.

2017-10-15 [P0566R3] pre-ABQ Meeting
● Changed the syntax for the polymorphic allocator passed to the constructor of

hazptr_domain​. The constructor is no longer constexpr.

https://issues.isocpp.org/show_bug.cgi?id=382
https://issues.isocpp.org/show_bug.cgi?id=382
https://issues.isocpp.org/show_bug.cgi?id=382
https://issues.isocpp.org/show_bug.cgi?id=382
https://issues.isocpp.org/show_bug.cgi?id=291
https://issues.isocpp.org/show_bug.cgi?id=291
https://issues.isocpp.org/show_bug.cgi?id=291
https://issues.isocpp.org/show_bug.cgi?id=291
https://issues.isocpp.org/show_bug.cgi?id=376
https://issues.isocpp.org/show_bug.cgi?id=376
https://issues.isocpp.org/show_bug.cgi?id=376

● Added the free function ​hazptr_barrier()​ that guarantees the completion of
reclamation of all objects retired to a domain.

● Changed the syntax of constructing empty ​hazptr_holder​-s.
● Changed the syntax of the ​hazptr_holder​ member function that indicated whether a

hazptr_holder​ is empty or not.
● Added a note that an empty ​hazptr_holder​ is different from a ​hazptr_holder​ that

owns a hazard pointer with null value.
● Added a note to clarify that it acceptable for ​hazptr_holder​ ​try_protect​ to return true

when its first argument has null value.
● Update RCU presentation to reduce member-function repetition.
● Fix RCU s/Void/void/ typo
● Remove RCU’s std::nullptr_t in favor of the new-age std::defer_lock_t.
● Remove RCU’s barrier() member function in favor of free function based on BSI

comment

2017-07-30 [P0566R2] Post-Toronto
● Allow hazptr_holder to be empty. Add a move constructor, empty constructor, move

assignment operator, and a bool operator to check for empty state.
● A call by an empty hazptr_holder to any of the following is undefined behavior: reset(),

try_protect() and get_protected().
● Destruction of an hazptr_holder object may be invoked by a thread other than the one

that constructed it.
● Add overload of ​hazptr_obj_base​ ​retire()​.

2017-06-18 [P0566R1] Pre-Toronto
● Addressed comments from Kona meeting
● Removed Clause numbering 31 to leave it to the committee to decide where to inject

this wording
● Renamed ​hazptr_owner​ ​hazptr_holder​.
● Combined ​hazptr_holder​ member functions ​set()​ and ​clear()​ into ​reset()​.
● Replaced the member function template parameter ​A​ for ​hazptr_holder

try_protect()​ and ​get_protected​ with ​atomic<T*>​.
● Moved the template parameter ​T​ from the class ​hazptr_holder​ to its member functions

try_protect()​, ​get_protected()​, and ​reset()​.
● Added a non-template overload of ​hazptr_holder::reset()​ with an optional

nullptr_t​ parameter.
● Removed the template parameter ​T​ from the free function ​swap()​, as ​hazptr_holder​ is

no longer a template.
● Almost complete rewrite of the hazard pointer wording.

--

3 Guidance to Editor
Hazard Pointer and RCU are proposed additions to the C++ standard library, for the
concurrency TS. It has been approved for addition through multiple SG1/SG14 sessions.
As hazard pointer and rcu are related, both being utility structures for deferred reclamation of
concurrent data structures, we chose to do the wording together so that the similarity in
structure and wording can be more apparent. They could be separated on request.
As both techniques are related to a concurrent shared pointer, it could be appropriate to be in
Clause 20 with smart pointer, or Clause 30 with thread support, or even entirely in a new clause
31 labelled Concurrent Data Structures Library. However, we also believe Clause 20 does not
seem appropriate as it does not cover the kind of concurrent data structures that we anticipate,
while clause 30 is just about Threads, mutex, condition variables, and futures but does not
cover data structures. We will not make any assumption for now as to the placement of this
wording and leave it to SG1/LEWG/LWG to decide and have used ? as a Clause placeholder.

4 Proposed wording

? Concurrent Data Structures Library [concur.data]

1. The following subclauses describe components to create and manage concurrent data
structures, perform lock-free or lock-based concurrent execution, and synchronize
concurrent operations.

2. If a data structure is to be accessed from multiple threads, then the program must be
designed to ensure that any changes are correctly synchronized between threads.This
clause describes data structures that have such synchronization built in, and do not
require external locking.

?.1 Concurrent Data Structures Utilities [concur.util]

1. This component provides utilities for lock-free operations that can provide safe memory
access, safe memory reclamation, and ABA safety.

?.1.1 Concurrent Deferred Reclamation Utilities [concur.reclaim]

1. The following subclauses describe low-level utilities that enable the user to schedule
objects for destruction, while ensuring that they will not be destroyed until after all
concurrent accesses to them have completed. These utilities are summarized in Table 1.
These differ from ​shared_ptr​ in that they do not reclaim or retire their objects
automatically, rather it is under user control, and they do not rely on reference counting.

Table 1 - Concurrent Data Structure Deferred Reclamation Utilities Summary

 Subclause Header(s)

?.1.1.2 Hazard Pointers <hazptr>

?.1.1.3 Read-Copy-Update <rcu>

?.1.1.1 Concurrent Deferred Reclamation Utilities General [concur.reclaim.general]
Highly scalable algorithms often weaken mutual exclusion so as to allow readers to traverse
linked data structures concurrently with updates. Because updaters reclaim (e.g., destroy)
objects removed from a given structure, it is necessary to prevent objects from being reclaimed
while readers are accessing them: Failure to prevent such accesses constitute use-after-free
bugs. Hazard pointers and RCU are two techniques to prevent this class of bugs. Reference
counting (e.g., ​atomic_shared_pointer​) and garbage collection are two additional techniques.

? Hazard Pointers [hazptr]

1. A hazard pointer is a single-writer multi-reader pointer that can be owned by at most one
thread at any time. Only the owner of the hazard pointer can set its value, while any
number of threads may read its value. A thread that is about to access dynamic objects
acquires ownership of a set of hazard pointers (typically one or two for linked data
structures) that it will use to protect such objects from being reclaimed.

2. The owner thread sets the value of a hazard pointer to point to an object in order to
indicate to concurrent threads — that might remove such object — that the object is not
yet safe to reclaim.

3. The hazard pointers library allows the presence of multiple hazard pointer domains,
where the safe reclamation of objects in one domain does not require checking the
hazard pointers in different domains. It is possible for the same thread to participate in
multiple domains concurrently. A domain can be specific to one or more objects, or
encompass all shared objects.

4. Hazard pointers are not directly exposed by this interface. Operations on hazard pointers
are exposed through the ​hazptr_holder​ class. Each instance of ​hazptr_holder​ owns
and operates on exactly one hazard pointer.

Header <hazptr> synopsis

namespace std {

namespace experimental {

// ?.1, Class hazptr_domain:

class hazptr_domain;

// ?.2, Default hazptr_domain:

hazptr_domain& default_hazptr_domain() noexcept;

// ?.?, Barrier

void hazptr_barrier(hazptr_domain& domain = default_hazptr_domain());

// ?.3, Class template hazptr_obj_base:

template <typename T, typename D = std::default_delete<T>>

 class hazptr_obj_base;

// ?.4, class hazptr_holder: automatic acquisition and release of

// hazard pointers, and interface for hazard pointer operations:

class hazptr_holder;

// ?.5, hazptr_holder: Swap two hazptr_holder objects:

void swap(hazptr_holder&, hazptr_holder&) noexcept;

} // namespace experimental

} // namespace std

?.1 Class hazptr_domain [hazptr.domain]

1. A hazard pointer domain contains a set of hazard pointers. A domain is responsible for
reclaiming objects retired to it (i.e., objects retired to this domain by calls to
hazptr_obj_base::retire()​), when such objects are not protected by hazard pointers
that belong to this domain (including when this domain is destroyed).

2. The number of unreclaimed objects retired to a domain D is bounded by O(A * R * H),
where A is the maximum number of simultaneously-live threads that have constructed a
hazptr_holder with D as the first constructor argument, R is the maximum number of
simultaneously-live threads that have invoked hazptr_obj_base::retire() with D as the first
argument, and H is the maximum number of simultaneously-live hazptr_holder objects
that were constructed by a single thread with D as the first argument..

class hazptr_domain {

 public:

 // ?.1.1 constructor:

 explicit hazptr_domain(

 std::pmr::polymorphic_allocator<byte> poly_alloc = {});

 // disable copy and move constructors and assignment operators

 hazptr_domain(const hazptr_domain&) = delete;

 hazptr_domain(hazptr_domain&&) = delete;

 hazptr_domain& operator=(const hazptr_domain&) = delete;

 hazptr_domain& operator=(hazptr_domain&&) = delete;

 // ?.1.2 destructor:

 ~hazptr_domain();

 private:

 std::pmr::polymorphic_allocator<byte> alloc_; // ​exposition only
};

?​.1.1 ​hazptr_domain​ constructors [hazptr.domain.constructor]
explicit hazptr_domain(

 pmr::polymorphic_allocator<byte> poly_alloc = {});

1. Effects: Sets ​alloc_​ to ​poly_alloc​.
2. Throws: Nothing.
3. Remarks: All allocation and deallocation of hazard pointers in this domain will use

alloc_​.

?.1.2 ​hazptr_domain​ destructor [hazptr.domain.destructor]
~hazptr_domain();

1. Requires: The destruction of all ​hazptr_holder​ objects constructed with this domain

and all ​retire()​ calls that take this domain as argument must happen before the
destruction of the domain.

2. Effects: Deallocates all hazard pointer storage used by this domain. Reclaims any
remaining objects that were retired to this domain.

3. Complexity: Linear in the number of objects retired to this domain that have not been
reclaimed yet and the number of hazard pointers contained in this domain.

?.2 Default ​hazptr_domain
[hazptr.default_domain]
hazptr_domain& default_hazptr_domain() noexcept;

1. Returns: A reference to the default ​hazptr_domain​.

?.2 Cleanup
[hazptr.cleanup]
void hazptr_cleanup(hazptr_domain& domain = default_hazptr_domain());

1. Effects: For each ​hazptr_obj_base​ object O, if the invocation of

hazptr_obj_base::retire​ on O happens before the invocation of ​hazptr_cleanup​,

and for each hazard pointer P that belongs to ​domain​, P does not point to O at the
invocation of ​hazptr_cleanup​, then the evaluation of the reclaim expression registered
in the retire call must complete before the return from this function.

2. Synchronization: The completion of the evaluation of each such reclaim expression
synchronizes with​ the return from ​hazptr_cleanup​. [​Note:​ To avoid deadlock, this
function must not be called while holding resources that may be required by such
expressions. — ​end note​]

?.3 Class template ​hazptr_obj_base​ [hazptr.base]
The base class template of objects to be protected by hazard pointers.

template <typename T, typename D = std::default_delete<T>>

class hazptr_obj_base {

 public:

 // retire

 void retire(

 D reclaim = {}, hazptr_domain& domain = default_hazptr_domain());

 void retire(

 hazptr_domain& domain);

};

1. hazptr_obj_base<T, D>*​ shall be convertible to ​T*​. [​Note:​ Typically, ​T​ is derived from
hazptr_obj_base<T, D>​. — ​end note​]

2. A client-supplied template argument ​D​ shall be a function object type for which, given a
value ​d​ of type ​D​ and a value ​ptr​ of type ​T*​, the expression ​d(ptr)​ is valid and has the
effect of disposing of the pointer as appropriate for that deleter.

3. D​ shall satisfy the requirements of ​Destructible​.

 void retire(

D reclaim = {}, hazptr_domain& domain = default_hazptr_domain());

 void retire(

 hazptr_domain& domain);

1. Effects: Registers the expression ​reclaim(static_cast<T*>(this))​ to be evaluated

asynchronously. For every hazard pointer P in ​domain​, ​hazptr_holder​ h that owns P,
source ​src​, and ​ptr​ equal to ​this​, if one of the following holds:
a. An evaluation of h.​try_protect(ptr, src)​ that returns ​true​, or an evaluation of
h.reset(this)​, happens before the evaluation of ​retire()
b. An evaluation of ​h.try_protect(ptr, src)​ returns ​true​, and a subsequent (in
modification order) modification of ​src​ away from t​his​ happens before the evaluation of
retire()​, and any subsequent (in modification order) modification of ​src​ setting its
value to ​this​ happens after the evaluation of ​reclaim()

then the evaluation of the expression will happen after a later modification of P that sets
it to a different value. The expression will be evaluated only once, and it will be
evaluated by the evaluation of a ​retire()​ or ​hazptr_cleanup()​ operation on ​domain​.

This function may also evaluate any number of expressions that were previously
registered by ​retire()​ calls with the same ​domain​ argument, subject to the restrictions
above. [​Note:​ To avoid deadlock, this function must not be called while holding
resources that may be required by such expressions. — ​end note​]

?.4 class hazptr_holder [hazptr.holder]
 Every object of type hazptr_holder is either empty or ​owns​ exactly one hazard pointer.

class hazptr_holder {

 public:

 // ?.4.1, Constructors

 explicit hazptr_holder(hazptr_domain& domain = default_hazptr_domain());

 hazptr_holder(hazptr_holder&&) noexcept;

 static hazptr_holder make_empty() noexcept;

 // disallow copy operations

 hazptr_holder(const hazptr_holder&) = delete;

 hazptr_holder& operator=(const hazptr_holder&) = delete;

 // ?.4.2, destructor

 ~hazptr_holder();

 // ?.4.3, assignment

 hazptr_holder& operator=(hazptr_holder&&) noexcept;

 // ?.4.4, empty

 bool empty() const noexcept;

 // ?.4.5, get_protected

 template <typename T>

 T* get_protected(const atomic<T*>& src) noexcept;

 // ?.4.6, try_protect

 template <typename T>

 bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;

 // ?.4.7, reset

 template <typename T>

 void reset(const T* ptr) noexcept;

 void reset(nullptr_t = nullptr) noexcept;

 // ?.4.8, swap

 void swap(hazptr_holder&) noexcept;

};

?.4.1 ​hazptr_holder​ constructors [hazptr.holder.constructors]
explicit hazptr_holder(hazptr_domain& domain = default_hazptr_domain());

1. Effects: Acquires ownership of a hazard pointer from ​domain​.
2. Throws: Any exception thrown by ​domain.alloc_.allocate()​.

hazptr_holder& hazptr_holder(hazptr_holder&& other) noexcept;

1. Effects: Constructs a hazptr_holder that owns the pointer originally owned by ​other​.

other​ becomes empty.

static hazptr_holder make_empty() noexcept;

1. Return: Returns an empty hazptr_holder.

?.4.2 ​hazptr_holder​ destructor [hazptr.holder.destructor]
~hazptr_holder();

1. Effects: If the hazptr_holder is not empty, sets the owned hazard pointer to null and then
releases ownership of it.

?.4.3 hazptr_holder assignment [hazptr.holder.assignment]
hazptr_holder& operator=(hazptr_holder&& other) noexcept;

1. Effects: If ​this != &other​, then ​*this​ takes ownership of the pointer originally owned
by other, and other becomes empty. Otherwise no effect.

2. Returns: ​*this.

?.4.4 hazptr_holder empty [hazptr.holder.empty]
bool empty() const noexcept;

1. Returns: ​true​ if and only if hazptr_holder is empty. [​Note:​ An empty ​hazptr_holder​ is
different from a nonempty ​hazptr_holder​ that owns a hazard pointer with null value. An
empty ​hazptr_holder​ does not own any hazard pointers. — ​end note​]

?.4.5 hazptr_holder get_protected [hazptr.holder.get_protected]
template <typename T>

 T* get_protected(const atomic<T*>& src) noexcept;

1. Requires: ​*this​ is not empty.
2. Effects: Equivalent to

T* ptr = src.load(memory_order_relaxed);

while (!try_protect(ptr, src)) {}

return ptr;
?.4.6 hazptr_holder try_protect [hazptr.holder.try_protect]
template <typename T>
 bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;

1. Requires: ​*this​ is not empty.
2. Effects: Retrieves the value in ​ptr​, sets the owned hazard pointer to that value, and

compares the contents of ​src​ for equality with the value retrieved from ​ptr​. The read
from ​src​ is a relaxed load if the comparison is true; otherwise it is an acquire load. If the
comparison is false, the contents of ​ptr​ are replaced by the value read from ​src​ and the
owned hazard pointer is set to null.

3. Returns: The result of the comparison. [​Note:​ It is possible for ​try_protect​ to return
true​ when ​ptr​ is a null pointer. — ​end note​]

4. Complexity: Constant.

?.4.7 hazptr_holder reset [hazptr.holder.reset]
template <typename T>
void reset(const T* ptr) noexcept;

1. Requires: ​*this​ is not empty.
2. Effects: Sets the value of the owned hazard pointer to ​ptr​.

void reset(nullptr_t = nullptr) noexcept;

1. Requires: ​*this​ is not empty.
2. Effects: Sets the value of the owned hazard pointer to ​nullptr​.

?.4.8 hazptr_holder swap[hazptr.holder.swap]
void swap(hazptr_holder& other) noexcept;

1. Effects: Swaps the owned hazard pointer and the domain of this object with those of the

other object. [​Note:​ The owned hazard pointers, if any, remain unchanged during the
swap and continue to protect the respective objects that they were protecting before the
swap, if any. — ​end note​]

2. Complexity: Constant.

?.5 hazptr_holder specialized algorithms [hazptr.holder.special]
void swap(hazptr_holder& a, hazptr_holder& b) noexcept;

1. Effects: Equivalent to ​a.swap(b)​.

?.1.1.3 Read-Copy Update (RCU) [rcu]
1. RCU is a synchronization mechanism that can be used for linked data structures that are

frequently read, but seldom updated. RCU does not provide mutual exclusion, but
instead allows the user to defer specified actions to a later time at which there are no
longer any RCU​ read-side critical sections​ that were executing at the time the deferral
started. Threads executing within an RCU read-side critical section are called ​readers​.

2. RCU read-side critical sections are designated using an RAII class ​std::rcu_reader​.
3. In one common use case (example shown below), RCU linked-structure updates are

divided into two segments.
[Note— The following example shows how RCU allows updates to be carried out in the
presence of concurrent readers. The reader function executes in one thread and the
update function in another. The ​rcu_reader​ instance in ​print_name​ protects the
referenced object ​name​ from being deleted by ​rcu_retire​ until the reader has
completed.

std::atomic<std::string *> name;

// called often and in parallel!

void print_name() {

 std::rcu_reader rr;

 std::string *s = name.load(std::memory_order_acquire);

 /* ...use *s... */

}

// called rarely

void update_name(std::string *new_name) {

 std::string *s = name.exchange(new_name, std::memory_order_acq_rel);

 std::rcu_retire(s);

}

—end note]
The first segment can be safely executed while RCU readers are concurrently traversing
the same part of the linked structure, for example, removing some objects from a linked
list. The second segment cannot be safely executed while RCU readers are accessing
the removed objects; for example, the second segment typically deletes the objects
removed by the first segment. RCU can also be used to prevent RCU readers from
observing transient atomic values, also known as the A-B-A problem.

4. A class ​T​ can inherit from ​std::rcu_obj_base<T>​ to inherit the ​retire​ member
function and the intrusive machinery required to make it work. Alternatively, any class ​T
can be passed to the ​std::rcu_retire​ free function template, whether it inherits from
std::rcu_obj_base<T>​ or not. The free function is expected to have performance and

memory-footprint advantages, but unlike the member function can potentially allocate.
Both types of retire functions arrange to invoke the deleter at a later time, when it can
guarantee that no​ read-side critical section​ is still accessing (or can later access) the
deleted data.

5. A ​std::synchronize_rcu​ free function blocks until all preexisting or concurrent
read-side critical sections ​have ended. This function may be used as an alternative to
the retire functions, in which case the synchronize_rcu follows the first (removal)
segment of the update and precedes the second (deletion) segment of the update.

6. A ​std::rcu_barrier​ free function blocks until all previous (​happens before
[intro.multithreading]) calls to ​std::rcu_retire​ have invoked and completed their
deleters. This is helpful, for instance, in cases where deleters have observable effects, or
when it is desirable to bound undeleted resources.

Header <rcu> synopsis

namespace std {

namespace experimental {

// ?.2, class template rcu_obj_base

template<typename T, typename D = default_delete<T>>

 class rcu_obj_base;

// ?.2.2, class rcu_reader: RCU reader as RAII

class rcu_reader;

void swap(rcu_reader& a, rcu_reader& b) noexcept;

// ?.2.3 function synchronize_rcu

void synchronize_rcu() noexcept;

// ?.2.4 function rcu_barrier

void rcu_barrier() noexcept;

// ?.2.5 function template rcu_retire

template<typename T, typename D = default_delete<T>>

void rcu_retire(T* p, D d = {});

} // namespace experimental

} // namespace std

?.2.1, class template rcu_obj_base [rcu.base]

Objects of type ​T​ to be protected by RCU inherit from ​rcu_obj_base<T>​. Note that
rcu_obj_base<T>​ has no non-default constructors or destructors.

template<typename T, typename D = default_delete<T>>

 class rcu_obj_base {

public:

 // ?.2.1, rcu_obj_base.retire: Retire a removed object and pass the

responsibility

 // for reclaiming it to the RCU library.

 void retire(

 D d = {});

};

?.2.1.1, rcu_obj_base retire [rcu.base.retire]
 void retire(

 D d = {}) noexcept;

1. Preconditions: The object referenced by ​this​ must not have previously been passed to
a retire function.

2. Effects: Causes the deleter to be invoked later at an unspecified point on unspecified
execution agents. Guarantees that for each instance R of ​rcu_reader​, either:
- ​rcu_retire​ ​synchronizes with​ (C++Std [intro.races]) R's constructor, or
- R's destructor ​synchronizes with​ the invocation of the deleter.

?.2.2, class rcu_reader [rcu.reader]

This class provides RAII RCU readers.

// ?.2.2, class template rcu_readers

class rcu_reader {

public:

 // ?.2.1, rcu_reader: RAII RCU readers

 rcu_reader() noexcept;

 rcu_reader(std::defer_lock_t) noexcept;

 rcu_reader(const rcu_reader&) = delete;

 rcu_reader(rcu_reader&& other) noexcept;

 rcu_reader& operator=(const rcu_reader&) = delete;

 rcu_reader& operator=(rcu_reader&& other) noexcept;

 ~rcu_reader() noexcept;

};

?.2.2.1, class template rcu_reader constructors [rcu.reader.cons]

 ​rcu_reader() noexcept;

1. Effects: Creates an active ​rcu_reader​ that is associated with a new RCU read-side
critical section.

2. Postconditions: For each retire-function (​std::rcu_obj_base::retire​ or
std::rcu_retire​) invocation such that this constructor does not ​happen before
(C++Std [intro.races]) that retire-function invocation, prevents the corresponding deleter
from being invoked.

 rcu_reader(std::defer_lock_t) noexcept​;

1. Effects: Creates an inactive ​rcu_reader​.

 rcu_reader(rcu_reader&& other) noexcept;

1. Effects: Creates an active ​rcu_reader​ that is associated with the RCU read-side critical

section that was associated with ​other​. If ​this​ was already associated with an RCU
read-side critical section, that critical section ends as described in the destructor. The
rcu_reader other​ becomes inactive.

?.2.2.2, class template rcu_reader assignment [rcu.reader.assignment]

 rcu_reader& operator=(rcu_reader&& other) noexcept;

1. Effects: If ​this​ is active, the corresponding RCU read-side critical section ends as

described in the destructor. In either case, ​this​ become active and holds the RCU
read-side critical section corresponding to ​other​, and ​other​ becomes inactive.

?.2.2.3, class template rcu_reader destructor [rcu.reader.dest]

 ~rcu_reader() noexcept;

1. Effects: If ​this​ is active, exits the corresponding RCU read-side critical section and

causes this destructor to ​synchronize with​ any deleter whose execution was prevented
by this critical section.

?.2.2.4, class template rcu_reader swap [rcu.reader.swap]

 void swap(rcu_reader& other) noexcept;

1. Effects: Swaps ​this​ and ​other​, thus swapping their RCU read-side critical section

states.

 void swap(rcu_reader& a, rcu_reader& b) noexcept; // free function

1. Effects: Swaps ​a​ and ​b​ thus swapping their RCU read-side critical section states.

?.2.3, function synchronize_rcu [rcu.synchronize]

 void synchronize_rcu() noexcept;

1. Effects: Guarantees that for each instance R of ​rcu_reader​, one of two things hold:
- The call to ​synchronize_rcu​ ​happens before​ R's constructor
- R's destructor ​synchronizes with​ the return from ​synchronize_rcu​.

2. Synchronization: Each ​synchronize_rcu​ invocation also has all of the ordering
properties of ​atomic_thread_fence(memory_order_seq_cst)​.

?.2.4, function rcu_barrier [rcu.barrier]

 void rcu_barrier() noexcept;

1. Effects: For each invocation of a retire function (​std::rcu_obj_base::retire​ or
std::rcu_retire​) such that ​rcu_barrier​ does not ​happen before​ the retire-function
invocation, blocks until the corresponding deleter has completed.

2. Synchronization: The completion of each such deleter ​synchronizes with​ the return from
rcu_barrier​.

?.2.5, function template rcu_retire [rcu.retire]

template<typename T, typename D = default_delete<T>>

void rcu_retire(T* p, D d = {});

1. Preconditions: The object referenced by ​p​ must not have previously been passed to a
retire function.

2. Effects: Causes the deleter to be invoked on ​p​ later at an unspecified point on
unspecified execution agents. Guarantees that for each instance R of ​rcu_reader​, one
of two things hold:
- ​rcu_retire​ ​synchronizes with​ R's constructor
- R's destructor ​synchronizes with​ the invocation of the deleter.

5. Acknowledgements
The authors thank Frank Birbacher, Olivier Giroux, Pablo Halpern, Lee Howes, Xiao Shi, Viktor
Vafeiadis, Dave Watson and other members of SG1 for useful discussions and suggestions that
helped improve this paper and its earlier versions.

6. References
Hazptr implementation:
https://github.com/facebook/folly/blob/master/folly/experimental/hazptr/hazptr.h

RCU implementation: ​https://github.com/paulmckrcu/RCUCPPbindings​ (See Test/paulmck)

[N4618] ​http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf

[P0233] Hazard Pointers: Safe Resource Reclamation for Optimistic Concurrency
 ​http://wg21.link/P0233

[P0461] Proposed RCU C++ API http://wg21.link/P0461

https://github.com/facebook/folly/blob/master/folly/experimental/hazptr/hazptr.h
https://github.com/paulmckrcu/RCUCPPbindings
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf
http://wg21.link/P0233

