
Document number: P0051R3=yy-nnnn

Date: 2018-02-12

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Experimental overload function for C++. This paper proposes one function that allow to overload lambdas
or function objects, but also member and non-member functions.

There will be another proposal to take care of grouping lambdas or function objects, member and non-
member functions so that the first viable match is selected when a call is done.

The overloaded functions are copied and there is no way to access to the stored functions. There will be
another proposal to take care state full function objects and a mean to access them.

1. Introduction
2. Motivation
3. Proposal
4. Design rationale
5. Open points
6. Proposed wording
7. Implementability
8. Acknowledgements
9. References

Signal a limitation on the design. We have some unexpected behavior when using final function

C++ generic overload function (Revision 3)

Table of Contents

History

Revision 3

mailto:vicente.botet@wanadoo.fr
file:///Users/viboes/github/tags/doc/proposals/overload/p0051r3.md#introduction
file:///Users/viboes/github/tags/doc/proposals/overload/p0051r3.md#motivation
file:///Users/viboes/github/tags/doc/proposals/overload/p0051r3.md#proposal
file:///Users/viboes/github/tags/doc/proposals/overload/p0051r3.md#design-rationale
file:///Users/viboes/github/tags/doc/proposals/overload/p0051r3.md#open-points
file:///Users/viboes/github/tags/doc/proposals/overload/p0051r3.md#proposed-wording
file:///Users/viboes/github/tags/doc/proposals/overload/p0051r3.md#implementability
file:///Users/viboes/github/tags/doc/proposals/overload/p0051r3.md#acknowledgements
file:///Users/viboes/github/tags/doc/proposals/overload/p0051r3.md#references

objects, reference_wrapper or any perfect forwarder wrapper if the overloads overlap.
Remove the wording waiting for a decision on how to manage with this limitation.

The 2nd revision of P0051R1 fixes some typos and takes in account the feedback from Oulu meeting. Next
follows the direction of the committee:

Add constexpr and conditional noexcept .
Confirmed the use universal references as parameters of the overload function.
Ensure that forward cv-qualifiers and reference-qualifiers are forwarded correctly.
Note that the use case for a final Callable is accepted.
Check the wording with an expert from the LGW before sending a new revision to LWG (Not done
yet).

The paper has been split into 3 separated proposals as a follow up of the Kona meeting feedback for
P0051R0:

overload selects the best overload using C++ overload resolution (this paper)
first_overload selects the first overload using C++ overload resolution (to be written).

Providing access to the stored function objects when they are state-full (to be written).

Experimental overload function for C++. This paper proposes one function that allow to overload lambdas
or function objects, but also member and non-member functions.

There will be another proposal to take care of grouping lambdas or function objects, member and non-
member functions so that the first viable match is selected when a call is done.

The overloaded functions are copied and there is no what to access to the stored functions. There will be
another proposal to take care state full function objects and a mean to access them.

As lambdas functions, function objects, can’t be overloaded in the usual implicit way, but they can be
“explicitly overloaded” using the proposed overload function:

This function would be especially useful for creating visitors, e.g. for variant.

Revision 2

Revision 1

Introduction

Motivation

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r0.pdf

 auto visitor = overload(
 [](int i, int j) { ... },
 [](int i, string const &j) { ... },
 [](auto const &i, auto const &j) { ... }
);

 visitor(1, std::string{"2"}); // ok - calls (int,std::string) "overload"

The overload function when there are only two parameters could be defined as follows (this is valid
only for lambdas and non-final function objects)

 template<class F1, class F2> struct overload : F1, F2
 {
 overloaded(F1 x1, F2 x2) : F1(x1), F2(x2) {}
 using F1::operator();
 using F2::operator();
 };

Instead of the previous example

auto visitor = overload(
 [](int i, int j) { … },
 [](int i, string const &j) { … },
 [](auto const &i, auto const &j) { … }
);

the user can define a function object

struct
{
 auto operator()(int i, int j) { … }
 auto operator()(int i, string const &j) { … }
 template <class T1, class T2>
 auto operator()(T1 const &i, T2 const &j) { … }
) visitor;

So, what are the advantages and liabilities of the overload function. First the advantages:

1. With overload the user can use existing functions that it can combine, using the function object would
need to define an overload and forward to the existing function.

Why do we need an overload function?

2. The user can group the overloaded functions as close as possible where they are used and don't need
to define a class elsewhere. This is in line with the philosophy of lambda functions.

3. Each overload can have its own captured data, either using lambdas or other existing function objects.
4. Any additional feature of lambda functions, automatic friendship, access to this, and so forth.

Next the liabilities:

1. The overload function generates a function object that is a little bit more complex and so would take
more time to compile.

2. The result type of overload function is unspecified and so storing it in an structure is more difficult (as it
is the case for std::bind).

3. With the function object the user is able to share the same data for all the overloads. Note that that the
last point could be seen as an advantage and a liability depending on the user needs.

The previous definition of overload is quite simple, however it doesn't accept member functions nor
non-member function, as std::bind does, but only function objects and lambda captures.

As there is no major problem implementing it and that their inclusion doesn't degrade the run-time
performances, we opt to allow them also. The alternative would be to force the user to use std::bind

or wrap them with a lambda.

We could either provide a binary or a variadic overload function.

 auto visitor =
 overload([](int i, int j) { ... },
 overload([](int i, string const &j) { ... },
 [](auto const &i, auto const &j) { ... }
));

The binary function needs to repeat the overload word for each new overloaded function.

We think that the variadic version is not much more complex to implement and makes user code simpler.

Design rationale

Which kind of functions would overload accept

Binary or variadic interface

Passing parameters by value or by forward reference

The function overload must store the passed parameters. If the interface is by value, the user will be
forced to move movable but non-copyable function objects. Using forward references has not this
inconvenient, and the implementation can optimize when the function object is copyable.

This has the inconvenient that the move is implicit. We follow here the same design than when_all and
when_any .

As with other functions that need to copy the parameters (as std::bind , std::thread , ...), the
user can use std::ref to pass by reference.

The user could prefer to pass by reference if the function object is state-full or if the function object is
expensive to move (copy if not movable) or even s/he would need it if the function object is not movable at
all.

The basic design use inheritance from the function object. However when the function object is a final class,
we cannot inherit from it. Nevertheless this final function object can be wrapped and the call be forwarded
to the wrapped object. Note that the wrapper will need to provide all combinations of cv-qualifiers.

The same applies to classes with final virtual destructors.

Call the functions based on C++ overload resolution, which tries to find the best match, is a good
generalization of overloading to lambdas and function objects.

However, when trying to do overloading involving something more generic, it can lead to ambiguities. So
the need for a function that will pick the first function that is callable. This allows ordering the functions
based on which one is more specific.

As both cases are useful, and even if this paper proposes only overload, there will be a separated proposal
for first_overload .

overload selects the best overload using C++ overload resolution and
first_overload selects the first overload using C++ overload resolution.

Fit library name them match and conditional respectively. FTL uses match to mean
first_overload . Boost.Hana names them overload and overload_linearly respectively.

reference_wrapper<F> to deduce F&

Final function objects

Selecting the best or the first overload

https://github.com/pfultz2/Fit
https://github.com/beark/ftl
http://boostorg.github.io/hana/

The proposed overload functions doesn't add any constraint on the result type of the overloaded
functions. The result type when calling the resulting function object would be the one of the selected
overloaded function.

However the user can force the result type and in this case the result type of all the overloads must be
convertible to this type (contribution from Matt Calabrese).

This can be useful in order to improve the compiling time of a possible match / visit function that
could take advantage when it knows the result type of all the overloads.

The result type of this function is unspecified as it is the result type of std::bind or std::mem_fn .

However when the function objects have a state it will be useful that the user can inspect the state. The
result type should provide an overload for std::get<F> / std::get<I> functions (contribution from
Matt Calabrese).

These functions should take in account that the overload can be a reference_wrapper<F> in order to
allow get<F&>(ovl) .

This paper doesn't include such access functions. Another paper will take care of this concern if there is
interest.

There is no reason the result of the function object couldn't be constexpr if the parameters are literals.

In addition these functions shall be noexcept when the parameters are no throw move constructible.

The overloaded functions should preserve constexpr . However, CWG-1581 prevents the use of
constexpr functions in non-evaluated contexts.

There is some specific behavior for std::overload . The overloaded functions are in most of the cases
not declared, they are introduced via a using declaration and so no constexpr is needed in these
cases.

There are some cases where we need to declare a forwarding functions, e.g. for pointer to functions.

Result type of resulting function objects

Result type of overload

constexpr and noexcept

forward constexpr

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581

Declaring this case as constexpr will prevent to use a call to the result of std::overload (the
overloaded set) in non-evaluated contexts CWG-1581 when there are pointer functions that are non
constexpr .

Not declaring it constexpr will prevent to call the result of std::overload (the overloaded set) in a
constexpr when there are pointer to functions even if the wrapped function is constexpr .

We believe that adding constexpr is the best approach even if it has some liabilities. These liabilities
will be fixed when CWG-1581 will be resolved. This is in line with P0356R3.

The overloaded functions can be conditionally noexcept depending on wether the stored functions are
noexcept .

Not adding the conditional noexcept could make the call less efficient and suggest to the user to write
directly a function object by hand. This is why this proposal request to preserve the nonexcept of the
stored functions.

The overloaded functions shall preserve cv and ref qualifiers.

In the case of a final class we need to wrap the final class and perfect forward the call to the final class.
However, this perfect forwarding implementation interacts with implicit conversions as shown in the
following example

forward noexcept

forward cv and ref qualifiers

Issue with perfect forwarding and implicit conversions

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0356r3.html

struct X;
struct Y {
// Y(const X&){} // enable this to fail
};
struct X {
// operator Y() const { return Y(); } // or enable this to fail
};

struct Foo final { void operator()(X) const { printf("X\n"); } };
struct Bar final { void operator()(Y) const { printf("Y\n"); } };

int main()
{
 auto ol = std::experimental::overload(Foo(), Bar());
 ol(X());
 return 0;
}

The perfect forwarding overload cannot select the best matching when there are types that implicitly convert
one to each other.

In order to fix the issue we will surely need some help from the compiler. Maybe
std::experimental::invocation_type could help, but we don't have yet a compiler implementing

those traits.

This issue happens also with reference_wrapper and any object function that has forwarding
references. Consider the following example:

struct A { operator()(std::string const&) };
struct B { operator()(std::string_view) };
A a; B b;
std::string s;

auto f = std::overload(a, b);
f(s); //-> calls a(s); b requires user defined conversion

Now suppose that B becomes so big that copying it is an issue and we decide to pass it by reference.

auto f = std::overload(a, std::ref(b));
f2(s); //-> calls b(s)

This function is used to combine multiple functors into one entity. Using the proposed best overload
approach, makes the code that combines such functors very fragile to code change, as the subtle changes
in the interface of the functor that is used (like std::string const& to std::string_view) may

lead to silent change in the result of invocation of the functor produced from std::overload .

The use of standard library features shouldn't be error prone while doing such kind of code refactoring, due
above I would suggest direction, when the domain of combined functors should not overlap - this should still
cover most of use cases of std::overload , i.e. visitation, as it make little sense to create an variant of
object that can be convertible to each other (like std::string , std::string_view and
const char*).

The surprises come when more than one overload matches and the wrapped perfect forwarder is preferred.
We can avoid these surprises, by requesting that only one single overload could be possible. This can be
implemented by wrapping with a perfect forwarder even for function objects that can be used as a base
class. In this case all the overloads will use perfect forwarding and so no one would have preference.

This has the drawback, that basic examples wouldn't work, as e.g.

 std::experimental::unique_overload(
 [](int) {
 //...
 }
 ,
 [](float) {
 //...
 }
)(1.0f);

No workaround other that using an additional first_overload .

As using perfect forwarding wrappers are subject to surprises, the guideline would be to don't use them
when there are several possible matches. Maybe we could simplify the overload function
simple_overload and don't wrap implicitly. This means that the overload function will work only with

(derivable) function objects and lambdas.

We can protect ourselves from the perfect forwarder wrappers by forbidding the standard ones as
reference_wrapper , not_fn , bind_front , ... but we cannot forbid the user defined perfect

Open points

Do we want an unique_overload function with no
surprises?

Do we want a simple_overload function?

forwarders wrappers. So we could just have a guideline for the user to tell them to don't use perfect
forwarder wrappers with std::simple_overload . This function at least will not introduce implicitly
new ones.

In order to make work the following example using std::ref

 function_with_state foo;
 function_with_state_2 foo2;

 // Ambiguous. reference_wrapper provide perfect forwarding calls :(
 std::experimental::overload(std::ref(foo), std::ref(foo2))(1.0f);

we can use the workaround using lambdas

 function_with_state foo;
 function_with_state_2 foo2;

 std::experimental::overload(
 [&foo](int i) { return foo(i); },
 [&foo2](float f) { return foo2(f); }
)(1.0f);

The following will call the nonMemberInt function even if the lambda float function seems a better
match

int nonMember(int);
{
 std::experimental::simple_overload(
 nonMemberInt,
 [](float f) { return foo2(f); }
)(1.0f);

}

The fix consists again in using a lambda that forwards the call to nonMemberInt , but being explicit
enough, no perfect forwarding should be used.

int nonMember(int);
{
 std::experimental::simple_overload(
 [](int i) { return nonMemberInt(i); },
 [](float f) { return foo2(f); }
)(1.0f);

}

We have some difficulties with the best match. A function that selects the first match will avoid any
confusion.

While the proposed std::overload function has some issues, it is quite practical in a lot of cases.

For the author,

unique_overload while avoiding surprises is quite restrictive when the overloads overlap.
simple_overload makes the work for the user more complex in most of the cases, but don't

prevent the user of using user defined perfect forwarding wrappers and introduce surprises.
overload makes the work for the user more simpler in most of the cases, but don't prevent the

user of using the perfect forwarding wrappers either explicitly or implicitly introducing possible
surprises.
first_overload should avoid any surprising issues, as it imposes an order.

If we decide to get rid of surprised and select unique_overload , first_overload would be
necessary. At the end this look like a good combination.

No wording provided until the open point is closed.

Do we want a first_overload function that selects the
first match?

Do we want a overload function that selects the best
possible match?

Proposed wording

Implementation

There is an implementation of the best match version of overload at https://github.com/viboes/std-
make/blob/master/include/experimental/fundamental/v3/functional/overload.hpp.

Thanks to Daniel Krügler who helped me to improve the wording and that pointe out to me the use case for
a final Callable.

Thanks to Scott Pager who suggested to add overloads for non-member and member functions.

Thanks to Paul Fultz II and Bjørn Ali authors of Fit and FTL from where the idea of the
first_overload function comes from.

Thanks to Matt Calabrese for its useful improvement suggestions on the library usability.

Thanks to Tony Van Eerd for championing the original proposal at Kona and for insightful comments.

Thanks to Stephan TL for pointing CWG-1581 "When are constexpr member functions defined?".

Thanks to Peter Remmers that reported the issue Issue16.

Thanks to Tomasz Kaminski helping me to refine the implementation for final function object and to the
private discussion about the possibility to have the combination of unique_overload and
first_overload as a much safer solution.

Special thanks and recognition goes to Technical Center of Nokia - Lannion for supporting in part the
production of this proposal.

Boost.Hana - Louis Dionne

http://boostorg.github.io/hana/

Fit - Paul Fultz II

https://github.com/pfultz2/Fit

FTL - Bjorn Ali

https://github.com/beark/ftl

N4564 N4564 - Working Draft, C++ Extensions for Library Fundamentals, Version 2 PDTS

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

Acknowledgements

References

https://github.com/pfultz2/Fit
https://github.com/beark/ftl
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581
https://github.com/viboes/std-make/issues/16
http://boostorg.github.io/hana/
https://github.com/pfultz2/Fit
https://github.com/beark/ftl
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

P0051R0 C++ generic overload function

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r0.pdf

P0051R1 C++ generic overload function (Revision 1)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r1.pdf

P0051R2 C++ generic overload function (Revision 2)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0051r2.pdf

P0356R3 Simplified partial function application

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0356r3.html

CWG-1581. When are constexpr member functions defined?

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581

Issue16 overload: ambiguous for compatible types

https://github.com/viboes/std-make/issues/16

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0051r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0051r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0356r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1581
https://github.com/viboes/std-make/issues/16

