
Feedback on P0214R6
Document Number P0820R1

Date 2017-11-15

Reply-to Tim Shen <timshen91@gmail.com>

Audience SG1, LEWG

Abstract
We investigated some of our SIMD applications and have some feedback on P0214R6.

This proposal does not intend to slow down P0214R6 from getting into the TS, but points out the
flaws that are likely to encounter sooner or later. Fixing these flaws now is supposed to save
time for the future.

Revision History

P0820R0 to P0820R1
● Rebase onto P0214R6.
● Added reference implementation link.
● For concat() and split(), instead of making them return simd types with implementation

defined ABIs, make them return rebind_abi_t<...>, which is an extension and
replacement of original abi_for_size_t.

● Removed the default value of ̀n` in split_by().
● Removed discussion on relational operators. Opened an issue for it

(https://issues.isocpp.org/show_bug.cgi?id=401).
● Proposed change to fixed_size from a struct to an alias, as well as guaranteeing the

alias to have deduced-context.

Is abi_for_size_t the right way to specify the ABIs for split() and
concat()?
Currently, the return types of split() and concat() don't depend on the input ABI(s) other than
for calculating sizes. This limits the implementation by enforcing the following expressions to
produce the same type of objects:

● concat(native_simd<int32>())

● concat(compatible_simd<int32>(), compatible_simd<int32>())

mailto:timshen91@gmail.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0214r6.pdf
https://issues.isocpp.org/show_bug.cgi?id=401

Suppose that compatible_simd<int32> is implemented by 16-bytes, XMM registers on x86; and
native_simd<int32> is implemented by 32-bytes, YMM registers on x86. Ideally, we'd like both
concat()s to be no-ops, if they are allowed to return different types: in the first case the return
value stays in the same YMM register; in the second case, the returned values still stay in the
same XMM registers.

To make both calls no-ops, the return types of those two need to be different.

That said, it may not practically matter in the function body, if the optimizer is smart enough. It
always affects function call boundaries, though. Example of a function call boundary:
https://godbolt.org/g/6EEE8H.

The fundamental issue is that abi_for_size only depends on the element type and the size.
Since it is only used by concat() and split(), we propose to drop abi_for_size and
abi_for_size_t, and let the implementation pick the returned ABI(s) for concat() and split().

Proposed Change
template <class T, size_t N, typename... As>
 struct abi_for_sizerebind_abi { using type = implementation-defined; };

template <class T, size_t N, typename... As>
 using abi_for_size_trebind_abi_t =
 typename abi_for_sizerebind_abi<T, N, As...>::type;

template <size_t... Sizes, class T, class A>

tuple<simd<T, abi_for_size_trebind_abi_t<T, Sizes, A>>>...>
 split(const simd<T, A>&);

template <size_t... Sizes, class T, class A>

tuple<simd_mask<T, abi_for_size_trebind_abi_t<T, Sizes, A>>...>
 split(const simd_mask<T, A>&);

Returns: A tuple of simd/simd_mask objects with the i-th simd/simd_mask element of the j-th
tuple element initialized to the value of the element in x with index i+ partial sum of the first j
values in the Sizes pack.

template <class T, class... As>

simd<T, abi_for_size_trebind_abi_t<T, (simd_size_v<T, As> + ...), As...>>
concat(const simd<T, As>&...);

template <class T, class... As>

simd_mask<T, abi_for_size_trebind_abi_t<T, (simd_size_v<T, As> + ...), As...>>

https://godbolt.org/g/6EEE8H

concat(const simd_mask<T, As>&...);

concat() doesn't support std::array
We propose it for being consistent with split(). Users may take the array from split(), do some
operations, and concat back the array. It'd be hard for them to use the existing variadic
parameter concat().

Proposed Change
template <class T, class Abi, size_t N>

simd<T, rebind_abi_t<T, N, Abi>> concat(const std::array<simd<T, Abi>, N>&);

template <class T, class Abi, size_t N>

simd_mask<T, rebind_abi_t<T, N, Abi>> concat(

 const std::array<simd_mask<T, Abi>, N>&);

Returns: A simd/simd_mask object, the i-th element of which is initialized by the input element,
indexed by i / simd_size_v<T, Abi> as the array index, and i % simd_size_v<T, Abi> as the
simd/simd_mask array element index. The returned type contains (simd_size_v<T, Abi> * N)
number of elements.

split() is sometimes verbose to use
It is sometimes verbose and not intuitive to use the array version of split(), e.g.

 template <typename T, typename Abi>

 void Foo(simd<T, Abi> a) {

 auto arr = split<simd<T, fixed_size<a.size() / 4>>>(a);

 // auto arr = split_by<4>(a) is much better.

 /* … */

 }

and it's even more verbose for non-fixed_size types. We propose to add split_by() that splits
the input by an `n` parameter.

Proposed Change
template <size_t n, class T, class A>

array<simd<T, rebind_abi_t<T, simd_size_v<T, A> / n, A>>, n> split_by(

 const simd<T, A>& x);

template <size_t n, class T, class A>

array<simd_mask<T, rebind_abi_t<T, simd_size_v<T, A> / n, A>>, n> split_by(

 const simd_mask<T, A>& x);

Remarks: The calls to the functions are ill-formed unless simd_size_v<T, A> is a multiple of n.

Returns: An array of simd/simd_mask objects with the i-th simd/simd_mask element of the j-th
array element initialized to the value of the element in x with index i + j *(simd_size_v<T, A> / n).
Each element in the returned array has size simd_size_v<T, A>::size() / n elements.

fixed_size<N> is not an alias
One possible implementation of ABI is to create a centralized ABI struct, and specialize around
it:

enum class StoragePolicy { kXmm, kYmm, /* ... */ };

template <StoragePolicy policy, size_t N> struct Abi {};

template <typename T> using native = Abi<kYmm, 32 / sizeof(T)>;

template <typename T> using compatible = Abi<kXmm, 16 / sizeof(T)>;

Then every operation is implemented and specialized around the centralized struct Abi.

Unlike native and compatible, fixed_size is not an alias, which requires extra specializations
other than the ones on struct Abi.

Proposed Change
template <int N> structusing fixed_size {}= /* implementation defined */;

Remark: fixed_size shall not introduce a non-deduced context.

Reference
● The original paper: P0214R6
● Experimental implementation: https://github.com/google/dimsum

http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0214r6.pdf
https://github.com/google/dimsum

