
Doc. no.: P0684R1
Date: 2017-10-11
Reply to: Titus Winters
Audience: WG21 (Full C++ Standards Committee)

C++ Stability, Velocity, and Deployment
Plans [R1]

Problems with stability, velocity, and deployment of the C++ programming language as it
evolves are identified. Policies are proposed to mitigate those problems.

Introduction
Over the past few years, the committee has increasingly demonstrated a lack of agreement on
priorities. As a result, many of the following questions have arisen in committee discussions:

● Is C++ a language of exciting new features?
● Is C++ a language known for great stability over a long period?
● Do we believe that upgrading to a new language version should be effortless?
● If so, how do we reconcile those effortless upgrades with a practical need to evolve the

language?
● If we prioritize stability over all else, are we bound to move slowly - only making a

change when we are certain it is correct and will never need future fixes?

It seems that members of the committee (and indeed the authors of this paper) have held
differing (perhaps even inconsistent) positions on these questions. In the prior revision of this
paper and the discussion in Toronto on that topic we sketched out several areas where we
believe there is room for improvement in committee behavior. This paper assumes familiarity
with that previous revision (rather than trying to incorporate concrete details and proposals into
the body of and already long and complex document).

Specifically, this paper proposes the creation of two additional standing documents, and one
substantive change in committee behavior. As per usual, the SDs require a plenary vote. As an
unusual step, we also suggest a plenary vote on the proposed change in committee behavior.
We also recognize that some relevant change in that behavior was already witnessed during the
Toronto meeting - we would like to establish a clear consensus from the committee as a whole
(especially the implementers and maintainers of legacy codebases).

Proposed Standing Document: Committee Goals
As per the section “Proposal - Our Promise To Users” in P0684R0 - we propose a new standing
document that clearly identifies the overall goals of the committee and what we intend to provide
for users. This document should be useful in setting user expectations, and also internally for
committee discussions when we are weighing conflicting values and trade-offs.

As described in R0, the contents of this doc would focus initially on what we aim to provide, and
may evolve over time to detail what goals the committee agrees upon for the language as a
whole. This is not expected to be perfectly binding, but should provide some common basis for
grounding our discussions and setting user expectations.

Proposed Standing Document: Compatibility
Guidelines
As per the section “Proposal - Clear User Requirements” in P0684R0 - we propose a new
standing document that clearly and concisely identifies the major types of behavior in user code
that we do not guarantee to support across language versions. Currently the standard calls out
some of these behaviors, usually by resorting to UB (as in [namespace.std]). However, it is not
clear which rules are in place for the purpose of reserving space for future standards and which
are merely in place to guarantee that the standard library functions properly (malicious injection
of names into std could in some cases lead to erratic behavior).

As described in R0, the contents of this doc would focus on the minimum set of behaviors a
user should avoid if they want upgrades between language versions to be easy, given the
arguments that are currently common in committee. See that revision for more examples.

Once this new SD is developed (and approved by an initial Plenary vote) it should be
popularized within the C++ user community. Further refinements to these guidelines should be
governed by EWG/Core/LEWG/LWG in the normal and appropriate fashion.

Proposed Approach for Evaluating Change Safety
As suggested in the previous revision of this paper (and as was starting to happen naturally
during the Toronto meeting after the presentation of such) - The Committee should be willing to
consider the design / quality of proposals even if they may cause a change in behavior or failure
to compile for existing code. Rather than consider the effect of every new language version
impacting code all at once, we should be aware that the act of deploying a new language

version is likely already time-intensive - even an ordinary update to compiler versions often
requires significant effort.

We should assume that users are will upgrade by:

● upgrading to a version of their compiler that supports C++n
● engaging diagnostics in C++(n-1) mode to warn of impending behavior changes
● evaluating those diagnostics / modifying their code as necessary
● turning on C++n mode

This requires additional diagnostics from implementers, and additional care from users, but
potentially unblocks significant avenues for improvement in the language at a the cost of
acceptable upgrade cost for users.

Examples
It is important to note that the examples provided here are provided on the basis of feasibility
and illustration, and are not concrete proposals. Please consider in terms of behavioral change,
detection, and the possibility to opt-out in a compatible fashion. The general purpose of this
proposal is to allow us to focus on “Do we like this change” and separately “How safe is it to
make this change / how difficult will it be for users to adopt to this?”. Otherwise we are forced to
hold every possible change against the “no behavioral difference ever” and we debate more on
“is this safe” rather than “is this good, and safe enough.”

Safest Change: No behavioral difference
Of course, it goes without saying that the changes we currently value most will continue to be
considered best - changes to the language that have no potential for impact on existing code.
(That of course presupposes that user code is well-behaved as per the newly proposed SD on
compatibility guidelines.)

Easiest-to-Adopt Change: Statically detectable difference with
previous-version avoidance options
The best newly-acceptable option: a behavior change that can be statically detected and that
has a options available in C++(n-1) that can make every existing instance conforming. That is: it
is easy for an engineer performing the language-version upgrade to verify that nothing is
affected in the end, as all sites have been modified.

For example: we decide that we want new keywords to support coroutines. In order to support
that, we choose to make “await” a keyword.

● Detectable: In C++(n-1) we can issue a warning for uses of the new keyword in existing
code (as variable names/type names/function names/etc).

● Opt-in: N/A
● Opt-out: Basic find+replace functionality will generally suffice. For comparison purposes,

reclaiming a keyword like await in Google’s codebase would require edits to 17 files. In
theory there may be cases where this becomes difficult or impossible for any given user
- if they have promised ABI compatibility and the affected keyword appears in their ABI,
this may be hard to resolve. (We should, of course, weigh the likelihood of these issues
against the gain for the whole C++ community / Standard quality.)

For example: In C++20 we decide to make the assignment/initialization + conditional ill-formed,
codifying the existing common warnings and instead relying on if+initializer syntax from C++17.
That is:
if (int i = Foo()) {
would become an error in favor of the new syntax:
if (int i; i = Foo())
or without declaration:
if (i = Foo())
would require the existing solution:
if ((i = Foo())

● Detectable: We can clearly issue a warning for this (we have done so for years in
most/all compilers)

● Opt-in: Every existing instance can be converted to one of the two alternate syntaxes
with no behavior change, in C++17 mode.

● Opt-out: N/A

Feasible-to-Adopt Change: Statically detectable difference w/
previous-version opt-out
The most common newly-acceptable option: a behavior change that can be statically detected
and that has a syntax available in C++(n-1) that can opt-out each potential instance of that
change. This has somewhat more cost than the previous, as each site of the impact needs to be
tracked and evaluated, but some (many) will remain in any given codebase when switching to
C++n. This leads to increased but tractable tracking problems for those performing the
language upgrade, scaling with the number of affected instances.

For example: we decide that synthesizing operator <=> for some set of classes is a preferable
direction for the language. A user-defined operator< is assumed to suppress that generation.

● Detectable: In C++(n-1) we can issue a warning for classes that will be impacted by this
change. (Obviously the compiler can statically determine if the class declaration makes it
eligible for the synthesis.)

● Opt-out: a type owner can opt-out in a backward-compatible manner by adding
something like:

bool operator< (const MyClass&) const = delete;
This would not change the behavior of the type in the previous language version, and
relies only upon previous-version syntax.

For example: we decide to stop synthesizing copy/assign special member functions in the
presence of a user-defined d’tor. A user-provided declaration (with =default) keeps the
generation intact.

● Detectable: We can issue a warning in C++(n-1) for classes where this synthesis would
be changed.

● Opt-out: Add the relevant =default explicitly. (Again, no change to behavior in the
previous language version.)

Potentially-Expensive-to-Adopt Change: Statically detectable
difference without opt-out
There may exist changes that we decide we wish to make where there is no reasonable change
that can be made to opt-out. These should generally be avoided, but may be decided to be
worth it if the expected outcome is fewer surprises/bugs in the long-term (or vanishingly few
impacted locations). Every instance of the resulting diagnostic will need to be (manually)
evaluated by those performing the language version upgrade.

For example: we decide to change overload resolution rules to consider template specializations
in the overload set (see the motivations in P0551R1). 1

● Detectable: Although it might be expensive, we can issue a warning in C++(n-1) when
performing overload resolution between a function and a function template that has
specializations.

● Opt-out: There is no obvious mechanism (at least none that I can think of) to generally
say at any given call site which of those overloads to pick, especially not in a generic
context.

Potentially Dangerous Change: Runtime Behavior Change
without diagnostic
We should obviously not increase the amount that we do this to well-behaved code, regardless
of whether we accept the rest of this proposal.

We should consider doing this to code that violates our description of well-behaved, as per the
proposed SD on Compatibility Guidelines. For example, if we suggest that move-constructors

1 Remember: I’m not suggesting we necessarily do this, I’m providing this as a thought-experiment
example to categorize types of changes.

are always assumed to be no-worse than copy-constructors, changing the behavior of
std::accumulate to prefer move accumulation is warranted. (This would of course be a
behavioral change for any user-provided type that has worse performance on move or different
semantics for a type that is moved-into instead of copied-into.)

