
Document number: P0649R0

Date: 2017-06-15

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Reflection Working Group / Library Evolution Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

This paper proposes some algorithms based on ProductType P0327R2 and TypeConstructible P0338R1
proposals.

History
Introduction
Motivation
Proposal
Design Rationale
Proposed Wording
Implementability
Open points
Future work
Acknowledgements
References

Take in account the feedback from Kona meeting concerning P0327R1. Next follows the direction of the
committee: Split the proposal into 3 documents

Other Product-Type algorithms

Abstract

Table of Contents

History

R0

mailto:vicente.botet@wanadoo.fr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0327r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r1.pdf
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0649r0.md#history
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0649r0.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0649r0.md#motivation
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0649r0.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0649r0.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0649r0.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0649r0.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0649r0.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0649r0.md#future-work
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0649r0.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0649r0.md#references
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r1.pdf

Product Type Access
Adaptation of current tuple-like algorithms to ProductType
Other ProductType algorithms

In this document, we describe some additional basic algorithms applicable to ProductTypes. There are yet a
lot of them.

There are a lot of algorithms working on ProductType P0327R2; a lot of the homogeneous container
algorithm are applicable to heterogeneous containers and functions, see Boost.Fusion and Boost.Hana.

P0648R0 proposes the basic algorithm that could be used in the definition of the extension of some tuple-
like algorithm already defined on the standard as apply , swap , lexicographical_compare ,
cat , assign , move , ...

Some examples of such algorithms are for_each , find , fold , any_of , all_of ,
none_of , accumulate , count , ...

Other algorithms that need in addition that the ProductType to be also TypeConstructible are e.g.
transform , filter , replace , zip , flatten , ...

Aside P0648R0 there are a lot of useful function associated to product types that make use only of the
product type access traits and functions.

 template <class F, class ProductType>
 constexpr void for_each(F&& f, ProductType&& pt);

This is the equivalent of std::for_each applicable to product types instead of homogeneous
containers or range types.

In the absence of product-type based for loops, this function will cover the hole.

Introduction

Motivation

Other functions for ProductType

for_each

fold_left / fold_right / accumulate

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0327r2.pdf
http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0648r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0648r0.pdf

This is the equivalent of std::accumulate applicable to product types instead of homogeneous
containers types.

It has the same motivation.

Checks if 1-unary p-predicate p returns true for all elements in the product type.

A p-predicate is a polymorphic predicate, that is an overload set.

It has the same motivation as the standard functions for homogeneous containers or range types.

Checks if 1-unary p-predicate p returns true for at least one elements in the product type.

It has the same motivation as the standard functions for homogeneous containers or range types.

Checks if 1-unary predicate p returns true for no elements in the product type.

It has the same motivation as the standard functions for homogeneous containers or range types.

This would depend on the new hash_value/hash_combine interface as proposed in P0029R0.

 template <class F, class ProductType>
 constexpr `see below` transform(F&& f, ProductType&& pt);

This is the equivalent of std::transform applicable to product types instead of homogeneous
containers types.

This needs in addition that ProductType is TypeConstructible (See [P0338R0]). Note that
std::pair , std::tuple and std::array are TypeConstructible, but std::pair and
std::array limit either in the number or in the kind of types (all the ame).

all_of

any_of

none_of

hash_value

Other functions for TypeConstructible ProductTypes

transform

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0029r0.html

A c-array is not type TypeConstructible as it cannot be returned by value.

This paper proposes some algorithms that can be built on top of the ProductType and the
TypeConstructible requirements.

The name of product type algorithms, transform , replace , join , are quite common. Nesting
them on a specific namespace makes the intent explicit.

We can also preface them with product_type_ , but the role of namespaces was to be able to avoid
this kind of prefixes.

If the user want to use shorter name it has always the possibility to define an namespace alias.

namespace stdex = std::experimental;

or import those into his own namespace

namespace mns {
 using namespace std::experimental;
}

The callable and predicate types passed to some algorithms must be polymorphic, as we have
heterogeneous types to what it should be applied. The user can use the proposed overload function
[OVERLOAD] to construct this overload set or use generic lambdas.

An alternative could be to pass a ProductType with a specific Callable/Predicate to apply on the element
type of the ProductType. I call those N-Callable/N-Predicate.

This paper is not proposing the use of N-Callable/N-Predicate, but the authors are looking for use cases

Proposal

Design Rationale

Locating the interface on a specific namespace

P-Callable and P-Predicates

N-Callable and N-Predicates

where this could be useful.

This is in relation with Haskell BiFunctor.

Some algorithms need a TypeConstructible ProductTypes as they need to construct a new instance of a
ProductTypes.

An alternative is to use std::tuple as the parameter determining the Product Type to construct.

We could also add a TypeConstructible parameter, as e.g.

 template <template <class...> TC, class ...ProductTypes>
 constexpr `see below` cat(ProductTypes&& ...pts);
 template <class TC, class ...ProductTypes>
 constexpr `see below` cat(ProductTypes&& ...pts);

Where TC is a variadic template for a ProductType as e.g. std::tuple or a TypeConstructor
P0343R0.

Most of the proposed algorithms for ProductType correspond to a more generic type of classes. E.g.
transform , is associated to Functor. The proposed algorithms correspond to the customization.

However some algorithms are not part of the customization point of the more generic type of classes, and
defining them here is a loss of time if we couldn't be able to customize them.

Waiting for those more general type of classes, we propose to add them here as we consider than the
implementation for a ProductType could have a better complexity and perform better.

The proposed changes are expressed as edits to N4564 .

Add the following section in N4564

Other functions for TypeConstructible ProductTypes

Shouldn't some of these functions belong to another
more generic type of classes?

Proposed Wording

Product type algorithms

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0343r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

Some algorithms need a make<TC>(args...) factory P0338R1.

If the first product type argument is TypeConstructible from the resulting Types then return an instance
of it; otherwise construct a std::tuple .

namespace std {

namespace product_type {

 template <class ProductType>
 constexpr bool is_empty(ProductType&& pt);
 template <class ProductType>
 constexpr auto back(ProductType&& pt);
 template <class ProductType>
 constexpr auto front(ProductType&& pt);

 template <size_t N, class ProductType>
 constexpr auto drop_front(ProductType&& pt);
 template <size_t N, class ProductType>
 constexpr auto drop_back(ProductType&& pt);

 template <size_t I, class ProductType, class T>
 constexpr auto insert(ProductType&& pt, T&& x);

 template <class F, class State, class ProductType
 constexpr State fold_left(ProductType&& pt, State&& state, F&& f);
 template <class F, class ProductType
 constexpr auto fold_left(ProductType&& pt, F&& f);

 template <class F, class ProductType
 constexpr void for_each(ProductType&& pt, F&& f);

 template <class ProductType, class F>
 constexpr bool transform(ProductType&& pt, F&& f);

}}

Product type algorithms synopsis

Function Template product_type::fold_left

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r1.pdf

template <class F, class State, class ProductType>
 constexpr State fold_left(ProductType&& pt, State&& state, F&& f);

template <class F, class ProductType
 constexpr State fold_left(ProductType&& pt, F&& f);

template <class ProductType>
 constexpr bool is_empty(ProductType&& pt);

Returns product_type::size<ProductType> == 0 .

template <class ProductType>
 constexpr auto front(ProductType&& pt);

Requires the ProductType pt is not empty.

Returns The first element of pt .

template <class ProductType>
 constexpr auto back(ProductType&& pt);

Requires the ProductType pt is not empty.

Returns The last element of pt .

template <class ProductType, class F>
 constexpr bool transform(ProductType&& pt, F&& f);

Requires: F is Callable with each one of the ProductType elements.

Returns: A ProductType constructed with the same type_constructor than the ProductType
ProductType rebinding each element with the result type of the application of F to each element.

Function Template product_type::is_empty

Function Template product_type::front

Function Template product_type::back

Function Template product_type::transform

template <size_t N, class ProductType>
 constexpr auto drop_front(ProductType&& pt);

Returns Drop the first N elements of pt and return the product type of the other elements in the same
order.

Remarks This function should not participate in overload resolution if the ProductType ProductType is
not able to rebind with the not dropped elements.

Note std::tuple and std::array are able to do that, but not std::pair or any user defined
struct.

template <size_t N, class ProductType>
 constexpr auto drop_back(ProductType&& pt);

Returns Drop the last N elements of pt and return the product type of the other elements in the same
order.

Remarks This function should not participate in overload resolution if the ProductType ProductType is
not able to rebind with the not dropped elements.

Note std::tuple and std::array are able to do that, but not std::pair or any user defined
struct.

template <size_t I, class ProductType, class T>
 constexpr auto insert(ProductType&& pt, T&& x);

Returns: Insert a value at a given index in a ProductType. Given a ProductType pt , an index I and an
element to insert x , insert inserts the element at the given index.

Remarks This function should not participate in overload resolution if the ProductType ProductType is
not able to rebind with the not resulting elements.

Note std::tuple and std::array are able to do that, but not std::pair or any user defined
struct.

Function Template product_type::drop_front

Function Template product_type::drop_back

Function Template product_type::insert

This is a library proposal. There is an implementation PT_impl of the basic ProductType algorithms. Not all
the proposed algorithms have been implemented.

The authors would like to have an answer to the following points if there is any interest at all in this
proposal:

Do we want this for Fundamental TS V3?

See Boost.Hana documentation.

Searchable algorithms:

contains
in
find
find_if
is_disjoint
is_subset

Sequence algorithms:

cartesian_product
group
insert_range
interperse
partition
permutations
remove_at
remove_range
reverse
scan_left
scan_right
slice

Implementability

Open Points

Future work

Add other algorithms on Product Types

https://github.com/viboes/std-make/tree/master/include/experimental/fundamental/v3/product_type
http://boostorg.github.io/hana/index.html

sort
...

Based on Range views for homogeneous Ranges Range-v3, views for heterogeneous sequences
Boost.Fusion, Boost.Hana define Product Types views, adaptors, ...

Based on the work N4569 for tagged tuples, associative sequences in Boost.Fusion, Struct in Boost.Hana
define Tagged ProductTypes and specific algorithms for them.

Thanks to all those that helped on P0327R1.

Thanks to Louis Ideone for his wonderful Boost.Hana library.

Special thanks and recognition goes to Technical Center of Nokia - Lannion for supporting in part the
production of this proposal.

Boost.Fusion Boost.Fusion 2.2 library

http://www.boost.org/doc/libs/1600/libs/fusion/doc/html/index.html

Boost.Hana Boost.Hana library

http://boostorg.github.io/hana/index.html

P0029R0 A Unified Proposal for Composable Hashing

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0029r0.html

N4564 N4564 - Working Draft, C++ Extensions for Library Fundamentals, Version 2 PDTS

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf

N4569 Proposed Ranges TS working draft

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4569.pdf

Product Types views and lazy algorithms

Tagged Product Types

Acknowledgments

References

https://github.com/ericniebler/range-v3
http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4569.pdf
http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r1.pdf
http://boostorg.github.io/hana/index.html
http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0029r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4564.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4569.pdf

P0327R1 Product Type Access (Revision 1)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r1.pdf

P0327R2 Product Type Access (Revision 2)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0327r2.pdf

P0338R1 C++ generic factories (Revision 1)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r1.pdf

P0343R0 Meta-programming High-Order Functions

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0343r0.html

P0648R0 Extending Tuple-like algorithms to Product-Types

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0648r0.pdf

PT_impl Product types access emulation and algorithms

https://github.com/viboes/std-make/tree/master/include/experimental/fundamental/v3/product_type

Range-v3 range-v3

https://github.com/ericniebler/range-v3

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0327r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0343r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0648r0.pdf
https://github.com/viboes/std-make/tree/master/include/experimental/fundamental/v3/product_type
https://github.com/ericniebler/range-v3

