
Document Number: P0629R0
Date: 2017-03-17
To: SC22/WG21 CWG/EWG
Reply to: Nathan Sidwell

nathan@acm.org

Distinguishing Module Interface
From Module Implementation
Gabriel Dos Reis, Jason Merrill, Nathan Sidwell

Alternative mechanisms for source-level distinction of module interface and implementation TUs.

1 Background
The current Modules TS (n4637) specifies that a module-declaration starts the purview of the module
interface TU or a module implementation TU:

module M;

A compiler is unable to determine whether a particular module-declaration denotes the interface or an
implementation. Unfortunately, it must know at that point because implementation TUs read data from
the corresponding interface in order to make names declared therein immediately available.

Programmers will probably have similar confusion, and at the very least resort to comments specifying
intent.

The most extreme example is a TU consisting solely of a module-declaration. Is it an interface that
exports nothing, or an implementation that implements nothing?

The Modules TS leaves it as an implicit requirement that the compiler’s invocation resolves this
ambiguity – by special command line option, distinguished file suffix or other mechanism at the
implementors discretion. Such ambiguity could lead to implementation divergence, and prohibit
particular implementation strategies (for instance providing module search path capability to an
existing build system via the environment). This has impact on build and development systems, forcing
them to recognize interface files as C++ (if, perhaps they have a different file suffix), and/or different
compiler invocation commands.

The implicit requirement has subtly split the language. It envisions 3 different modes of translation:

• Compiling a module interface, or

• Compiling a module implementation, or

• Neither of the above

mailto:nathan@acm.org

Of course the third alternative could be considered a subset of one of the other two. But it remains that
the first two need information not provided in the program source. This is an undesirable situation.

2 Direction
At the Kona ‘17 meeting EWG discussion led to the consensus that:

• Interface and implementation module-declarations should be distinct.

• A preference was for annotating the interface’s module-declaration.

This paper explores alternative ways of specializing the interface’s module-declaration.

In either case the amended module-declaration is referred to as an exporting module-declaration. The
new section 7.7 [dcl.module] is amended as follows:

2 A module is a collection of module units, at mostexactly one of which contains an exporting
module-declaration and optionally export-declarations, or exported-fragment-groups orand
module-export-declarations. Such a distinguished module unit is called the module interface
unit. Any other module unit is called a module implementation unit.

2.1 Attribute
One approach is to specify a standard attribute in the module-declaration (whose grammar already
permits attributes):

module M [[interface]];

In the absence of the attribute, command line or other options could (continue) to distinguish interface
from implementation.

One drawback is that rather than being an optimization, debugging or other optional hint, this attribute

mandates a semantic difference. It also reserves an identifier, interface, that is now unavailable for

macro use.

2.2 First Class Syntax
An alternative would be to augment the grammar. The simplest change appears to be denoting the
interface with:

export module M;

This has the pleasant feature of using the existing keyword ‘export’ to mark the translation unit that

is exporting the module’s interface. All the occurrences of ‘export’ continue to appear only in the

interface TU.

The grammar in the amended paragraph 3.5/1 would insert an additional optional keyword:

module-declaration
exportopt module module-name attribute-specifier-seqopt;

Toolchains could continue to offer their existing mechanism for distinguishing a module interface TU –
in effect offering a C++-interface compilation mode.

3 Conclusion
The attribute approach is aesthetically unpleasing. If accepted, it shall forever appear as a wart. Even if
toolchains require or permit additional options for the interface, programmers will need to distinguish
interface from implementation in the program source itself.

Our recommendation is the new syntax approach. It is a very localized simple grammar change.
Leveraging it so that an implementation no longer needs a special invocation mode may of course be
more involved. However, even if implementations remain unchanged in that regard, more informative
diagnostics could still be delivered as the programmer has made her intent clearer.

Whichever scheme is chosen, implementations could continue to offer their existing mechanism to
disambiguate interface from implementation.

	1 Background
	2 Direction
	2.1 Attribute
	2.2 First Class Syntax

	3 Conclusion

