P0591r1 | Utility functions to implement uses-allocator construction

Pablo Halpern phalpern@halpernwightsoftware.com

2017-03-09 | Target audience: LEWG

1 Abstract

The phrase “ Uses-allocator construction with allocator Alloc” is defined in section [allocator.uses.construction)]
of the standard (20.7.7.2 of the 2014 standard or 20.10.7.2 of the 2016 CD). Although the definition is reason-
ably concise, it fails to handle the case of constructing a std: :pair where one or both members can use Alloc.
This omission manifests in significant text describing the construct members of polymorphic_allocator
[memory.polymorphic.allocator.class] and scoped_allocator_adaptor [allocator.adaptor]. Additionally,

a vector<pair<T,U>, A> fails to pass the allocator to the pair elements if A is a scoped or polymorphic
allocator.

Though we could add the pair special case to the definition of Uses-allocator construction, the definition would
no longer be concise. Moreover, any library implementing features that rely on Uses-allocator construction
would necessarily centralize the logic into a function template. This paper, therefore, proposes a set of
templates that do exactly this centralization, in the standard. The current uses of Uses-allocator construction
could then simply defer to these templates, making those features simpler to describe and future-proof against
other changes.

Because this proposal modifies wording in the standard, it is targeted at C++20 (aka, C+-+Next) rather
than a technical specification.

2 Changes from RO

e Fixed function template prototypes, which incorrectly depended on partial specialization of functions.

3 Choosing a direction

Originally, I considered proposing a pair of function templates, make_using_allocator<T>(allocator,
args...) and uninitialized_construct_using_allocator(ptrToT, allocator, args...). However,
implementation experience with the feature being proposed showed that, given a type T, an allocator A, and
an argument list Args. . ., it was convenient to generate a tuple of the final argument list for T’s constructor,
then use make_from_tuple or apply to implement the above function templates. It occurred to me that
exposing this tuple-building function may be desirable, as it opens the door to an entire category of functions
that use tuples to manipulate argument lists in a composable fashion.

If the basics of this proposal are accepted by LEWG, there would need to be a discussion of exactly what
should be standardized. The options are:

1. Standardize the function template that generates a tuple of arguments.


mailto:phalpern@halpernwightsoftware.com

2. Standardize the function templates that actually construct a T from an allocator and list of arguments.
3. Both.

This proposal chooses option 3, but I am open to the other options.

4 Proposed wording

The following wording is still rough. More detailed wording to come after LEWG review and revision.
Wording is relative to the November 2016 Committee Draft, N5131.

Guidance needed: The wording uses forward_as_tuple, which prevents copies, and doesn’t require copy-
or move-constructibility, but can result in dangling references if the resulting tuple outlives the full expression
in which it was created. Is this OK? If so, should I repeat the cautionary words already found in the
description of forward_as_tuple?

Add the following new function templates to <memory>:

template <class T, class Alloc, class... Args>
auto uses_allocator_construction_args(const Allock a, Args&&... args) -> see below;

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution if T is a specialization of std: :pair.

Returns: A tuple value determined as follows:

o if uses_allocator_v<T, Alloc> is false and is_constructible_v<T, Args...> is true,
return forward_as_tuple(std::forward<Args>(args)...).

e otherwise, if uses_allocator_v<T, Alloc> is true and is_constructible_v<T,
allocator_arg_t, Alloc, Args...> is true, return forward_as_tuple(allocator_arg,
alloc, std::forward<Args>(args)...).

o otherwise, if uses_allocator_v<T, Alloc>istrue and is_constructible_v<T, Args...,
Alloc> is true, return forward_as_tuple(std: :forward<Args>(args)..., alloc).

o otherwise, the program is ill-formed. [Note: An error will result if uses_allocator_v<T,
Alloc> is true but the specific constructor does not take an allocator. This definition prevents
a silent failure to pass the allocator to a constructor. — end note]

template <class T, class... Argsl, class... Args2>
auto uses_allocator_construction_args(const Allock a,
piecewise_construct_t,
tuple<Argsl...> x,
tuple<Args2...> y) -> see below;

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std: :pair.

Returns: For T specified as pair<T1, T2>, equivalent to

P0591r1 2 Pablo Halpern



make_tuple(piecewise_construct,

apply(x, [J(Argsl... argsl) -> auto {

return uses_allocator_construction_args<Ti>(a,
std: :forward<Argsi>(argsl)...);

b,

apply(y, [1(Args2... args2) -> auto {
return uses_allocator_construction_args<T2>(a,

std: :forward<Args2>(args2)...);

);

template <class T>
auto uses_allocator_construction_args(const Alloc& a) -> see below;

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std: :pair.

Returns: For T specified as pair<T1, T2>, equivalent to uses_allocator_construction_args<pair<T1,T2>>(a,
piecewise_construct, tuple<>{}, tuple<>{})

template <class T, class U, class V>
auto uses_allocator_construction_args(const Alloc& a, U&& u, V&& v) -> see below;

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std: :pair.

Returns: For T specified as pair<T1, T2>, equivalent touses_allocator_construction_args<pair<T1,T2>>(a,
piecewise_construct, forward_as_tuple(std::forward<U>(u)), forward_as_tuple(std: :forward<V>(v))).

template <class T, class U, class V>
auto uses_allocator_construction_args(const Alloc& a, const pair<U,V>& pr) -> see below;

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std: :pair.

Returns: For T specified as pair<T1, T2>, equivalent to uses_allocator_construction_args<pair<T1,T2>>(a,
piecewise_construct, forward_as_tuple(pr.first), forward_as_tuple(pr.second)).

template <class T, class U, class V>
auto uses_allocator_construction_args(const Allock a, pair<U,V>&& pr) -> see below;

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std: :pair.

Returns: For T specified as pair<T1, T2>, equivalent to uses_allocator_construction_args<pair<T1,T2>>(a,
piecewise_construct, forward_as_tuple(std::forward<U>(pr.first)), forward_as_tuple(std: :forward<}

template <class T, class Alloc, class... Args>
T make_using_allocator(const Alloc& a, Args&k... args);

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std: :pair.

P0591r1 3 Pablo Halpern



Returns: For T specified as pair<T1, T2>, equivalent to

make_from_tuple<T>(
uses_allocator_construction_args<T>(a, forward<Args>(args)...));

template <class T, class Alloc, class... Args>
T* uninitialized_construct_using_allocator(T* p,
const Alloc& a,
Args&&... args);

Remark: T is not deduced and must therefore be specified explicitly by the caller. This template
does not participate in overload resolution unless T is a specialization of std: :pair.

Returns: For T specified as pair<T1, T2>, and given the exposition-only function template:

template <class T, class... A>
uninitialized_construct_from_tuple(T* p, tuple<A...>&& t) {
apply(std::move(t), [J(A&%... args) {
::new(static_cast<void*>(p)) T(std::forward<A>(args)...);

B
}

equivalent to

uninitialized_construct_from_tuple(

P
uses_allocator_construction_args<T>(a, forward<Args>(args)...));

Guidance Needed: Should we consider adding uninitialized_construct_from_tuple as a separate
(non-exposition) function, since it appears to be useful and it’s hard to do the same thing without creating a
named function?

Additionally, rewrite the construct methods of polymorphic_allocator and scoped_allocator_adaptor
in terms of the above.

Consider replacing all uses of uses allocator construction with references to these functions and removing
uses allocator construction from the standard.

P0591r1 4 Pablo Halpern



	Abstract
	Changes from R0
	Choosing a direction
	Proposed wording

