
Document Number: P0233R5
Date: 2017-07-30
Reply-to: maged.michael@acm.org, michael@codeplay.com, paulmck@linux.vnet.ibm.com,
arthur.j.odwyer@gmail.com, dshollm@sandia.gov, gromer@google.com, ahh@google.com
Authors: Maged M. Michael, Michael Wong, Paul McKenney, Arthur O'Dwyer, David Hollman,
Geoffrey Romer, Andrew Hunter
Project: Programming Language C++, SG14/SG1 Concurrency, LEWG

Hazard Pointers
Safe Resource Reclamation for Optimistic Concurrency

1. Introduction
1.1 History

2. Hazard Pointers
2.1. Hazard Pointer Domains
2.2. Main Structures and Operations
2.3. Pros and Cons

3. Design Considerations
3.1. Progress Guarantees
3.2. Thread Types
3.3. Memory Allocation and Deallocation
3.4. Reclamation Frequency
3.5. Number of Hazard Pointers and Thread Caching
3.6. Thread-Local Storage
3.7. Exceptions
3.8. Primitives and Dependencies

4. Design Overview

5. Impact on the Standard

6. Existing Implementations and Target Workloads

7. Comparison of Deferred Reclamation Methods

8. Proposal for Adding a Hazard Pointer Library
8.1. hazptr_domain class
8.2. hazptr_obj_base class template
8.3. hazptr_holder class

9. Sample Interface and Implementation

1/17

10. Appendix A: Draft Library Interface Header

11. Acknowledgement

12. References

1. Introduction
Under optimistic concurrency, threads may use shared resources concurrently with other 1

threads that may make such resources unavailable for further use. Care must be taken to
reclaim such resources only after they are guaranteed that no threads will subsequently use
them.

More specifically, concurrent dynamic data structures that employ optimistic concurrency allow
threads to access dynamic objects concurrently with threads that may remove such objects.
Without proper precautions, it is generally unsafe to reclaim the removed objects, as they may
be accessed subsequently by threads that hold references to them. Solutions for the safe
reclamation problem can also be used to prevent the ABA problem, a common problem under
optimistic concurrency.

There are several methods for safe deferred reclamation. The main methods aside from
automatic garbage collection are reference counting, RCU (read-copy-update), and hazard
pointers. Each method has its pros and cons and none of the methods provides the best
features in all cases. Therefore, it is desirable to offer users the opportunity to choose the most
suitable methods for their use cases. See paper P0232R0 (Concurrency ToolKit for Structured
Deferral/Optimistic Speculation)[3] for a detailed comparative analysis of these methods along
with atomic shared pointers which is based on an earlier paper by Paul McKenney [1]. This
proposal focuses on the hazard pointer method [2].

We propose adding hazard pointers as a library as part of a collection of Concurrency ToolKit
methods (P0232R0).

1.1 History
2017-07-30 R5:

● Allow hazptr_holder to be empty. Add a move constructor, empty state constructor,
move assignment operator, and a bool operator to check for empty state.

● A call to reset(), try_protect(), or get_protected() is undefined behavior if the
hazptr_holder is empty.

1 Throughout this document, we use to term ​thread​ to refer to any thread of execution, including
language-level threads, processes, and signal handlers.

2/17

● Add overload of hazptr_obj_base retire().
2017-06-18 R4:
- Reverted the generic template parameter of hazptr_owner::try_protected() and
hazptr_owner::get_protected to std::atomic to avoid re-specifying atomics in the draft wording.
- Renamed hazptr_owner to hazptr_holder.
- Changed hazptr_holder::set(const T* ptr) to reset(const T* ptr) and hazptr_holder::clear() to
reset(nullptr_t = nullptr).
- Made hazptr_holder a class and not a class template, while making get_protected(),
try_protect(), and reset(const T*) member function templates.
- Updated the reference in Section 5 to the corresponding draft standard wording (P0566R1).
- Updated the information about implementation options and a prefered performant
implementation in Section 9.

2017-02-06: R3:
- Replaced std::atomic with a generic template parameter to allow different atomic types.
Updated Sections 8 and 10 accordingly.
- Added a reference in Section 5 to draft standard wording (P0566R0).

2016-10-17:R2
- Renamed haz_ptr_control_block hazptr_domain
- Renamed haz_ptr_guard hazptr_owner
- Renamed haz_ptr_obj hazptr_obj_base
- hazptr_domain constructor takes an optional argument, a memory_resource for allocating and
deallocating hazard pointers.
- hazptr_obj_base has two template parameters: object type and deleter type
- Renamed and moved the reclaim() member function template of haz_ptr_control_block to be
the member function retire() of the hazptr_obj_base.
- Removed all optional thread-specific parts of the interface for clarity at this point.
- Renamed haz_ptr_guard::protect() hazptr_owner::try_protect()
- Added the function get_protected() to hazptr_owner.
- Added a free function template swap() for swapping hazptr_owner instances.

2016-09-21: Review of a partial update.at SG14 CPPCON

2016-05-30:R1
- Renamed haz_ptr haz_ptr_guard and made it a class template
- Using default allocator by default instead of malloc and free
- Changed the haz_ptr_control_block from default constructor to template c'tor
- Moved reclaim() and rem_policy to haz_ptr_control_block
- Made set() take T* as parameter instead of void*
- Removed allocation and deallocation function objects from haz_ptr_guard c'tor
- haz_ptr_obj became a class template
- Added noexcept and const wherever applicable

3/17

- Removed examples and some optional (nice to have) functions and parameters until a core
interface is approved

2016-03-04: 1st review by SG1; positive support to continue work; but interface needs to be
patterned to C++, as well as other comments; reviewed at SG14 GDC 2016 with Jeffrey, Hans,
Michael, Lee, JF

2016-02-12: R0 with initial proposal

1.2 Planned Changes
The following is a list of possible changes before the Albuquerque meeting:

● Refinement of the null constructor for hazptr_holder.
● Refinement of overloads of hazptr_obj_base retire().
● Revision of the wording in P0566 for more precise specification of memory ordering.
● Consideration of adding a non-intrusive interface.
● Ensuring that the hazard pointer interface satisfies the requirements for a performant

cell<T> implementation (P0561 describes the cell<T> deferred reclamation proposal).

2. Hazard Pointers
A hazard pointer is a single-writer multi-reader pointer that can be owned by at most one thread
at any time. Only the owner of the hazard pointer can set its value, while any number of threads
may read its value. A thread that is about to access dynamic objects optimistically acquires
ownership of a set of hazard pointer (typically one or two for linked data structures) to protect
such objects from being reclaimed. The owner thread sets the value of a hazard pointer to point
to an object in order to indicate to concurrent threads — that may remove such object — that
the object is not yet safe to reclaim.

4/17

Hazard pointers are owned and written by threads that act as users (i.e., may use removable
objects) and are read by thread that act as removers (i.e., may remove objects). The set of user
and remover threads may overlap, so the same thread may write to its own hazard pointers
when using objects and read the hazard pointers including those of other threads when
reclaiming removed objects.

The key rule of the hazard pointers method is that ​a removed object can be reclaimed only
after it is determined that no hazard pointers have been pointing continuously to it from a
time before its removal​.

In addition to the primary use cases for hazard pointers for memory reclamation, objects
protected by hazard pointers could represent other reclaimable resources such as files, ports,
and devices. Also, the method can be used by signal handlers and among processes as well as
among language-level threads.

2.1. Hazard Pointer Domains
The hazard pointers method allows the presence of multiple hazard pointer domains, where the
safe reclamation of resources in one domain does not require checking all the hazard pointers
in different domains. It is possible for the same thread to participate in multiple domains
concurrently. A domain can be specific to one or more resources, or can encompass all sharing
among multiple processes in a system.

5/17

2.2. Main Structures and Operations
The main structures of the hazard pointers method are:

● Hazard pointers:​ pointer-sized variables.
● Removed objects​ awaiting reclamation.
● Container structures​ for hazard pointer records and removed objects.

The key operations are:

● Allocate​ a hazard pointer.
● Acquire​ ownership of a hazard pointer.
● Set​ the value of a hazard pointer to protect an object.
● Clear​ the value of a hazard pointer.
● Release​ ownership of a hazard pointer.
● Request the ​deferred reclamation​ of a removed object.
● Read​ the value of a hazard pointer.

Design details are discussed in following sections.

2.3. Pros and Cons
The main advantages of the hazard pointers method are that:

1. The number of removed objects that are not yet reclaimed is bounded.
2. Readers do not interfere with each other or with writers
3. Cache friendly access patterns.
4. Constant time complexity for traversal and (expected amortized time for) reclamation
5. Its operations are lock-free (mostly wait-free), and therefore it is suitable for use in 2

non-blocking operations that are required to be async signal-safe or immune to
asynchronous process termination.

The main disadvantage of the hazard pointers method is that each traversal incurs a store-load
memory order fence, when using the method's basic form (without blocking or using system
support such as ​sys_membarrier()​).

3. Design Considerations

3.1. Progress Guarantees
Some use cases of hazard pointers require that all operations be non-blocking from end to end.
An operation is non-blocking if it is guaranteed to complete in a finite number of its own steps

2 ​Provided that atomic pointer and integer types are lock-free.

6/17

when it runs without interference from other operations, regardless of where other threads are
blocked. Lock-free progress is a stronger form of non-blocking progress; it further guarantees
collective forward progress even in the presence of interference among threads. Wait-free
progress (even stronger) guarantees that an operation will complete in a finite number of its own
steps. The hazard pointers method can have end-to-end lock-free implementations.

Non-blocking progress is an essential requirement for operations to be async signal safe. It is
also essential for guaranteeing availability of resources in cases where processes may be killed
asynchronously while sharing such resources.

The main requirements for guaranteeing lock-free progress are:

● Not using thread-local storage (unless TLS is guaranteed to be non-blocking). This
implies the need to implement non-blocking container structures for removed objects.

● Not using the default memory allocator, as it is unlikely to be completely non-blocking.
This implies the need to design the library interface in a way that allows the specification
of custom allocation and deallocation functions, as well as avoidance of memory
allocation when possible.

3.2. Thread Types
Some use cases are by thread types other than typical language-level threads — in particular,
signal handlers and processes. Support for signal handlers requires implementation options that
avoid thread-local storage and that allow the use of non-blocking allocators. Support for 3

processes require allowing custom allocation and deallocation functions that can operate on
shared memory (and other shared system resources protected by hazard pointers).

3.3. Memory Allocation and Deallocation
There are several cases (as mentioned above) that require the use of custom allocators:

● The deferred reclamation of objects that are not allocated using malloc (e.g., new).
● End-to-end non-blocking progress is required.
● Sharing resources among processes.

Accordingly, the implementation must provide the capability to specify custom allocation and
deallocation functions in various parts of the library interface.

3.4. Reclamation Frequency
There is a trade-off between:

● The upper bound on the number of removed objects that are not yet reclaimed.
● The time complexity of reclamation per object

3 ​c.f. p0270r0 and minutes from Jacksonville: ​http://wiki.edg.com/bin/view/Wg21jacksonville/P0270

7/17

http://wiki.edg.com/bin/view/Wg21jacksonville/P0270

● Using thread-local storage.

For the purposes of this discussion, let N be the maximum number of hazard pointers (in a
domain), and let M be the number of remover threads.

Using thread-local storage (assuming wait-free TLS), the M removers can perform bulk
reclamation after accumulating a number of removed objects that is at least ​N+ϴ(N)​ (e.g., ​2*N​).
In such case the upper bound on the number of unreclaimed removed objects is O(M*N) and
the amortized expected time per reclaimed object is constant. The progress is wait-free and
contention-free.

Without using thread-local storage, removed objects are inserted in shared lock-free structures.
The worst-case unreclaimed removed objects can be bounded by O(N), but contention
becomes possible and progress becomes lock-free instead of wait-free.

3.5. Number of Hazard Pointers and Thread Caching
Using a fixed number of hazard pointers simplifies the implementation, but it restricts use and
can be inconsistent with non-blocking progress if a larger number of hazard pointers is needed.
For the sake of flexibility, the implementation must allow the dynamic allocation of hazard
pointers.

Caching released hazard pointers between operations can minimize contention related to
acquiring hazard pointers. Caching can be done transparently in the library implementation
using TLS, however TLS is not always guaranteed to be non-blocking. Of course the
programmer can cache hazard pointers explicitly at the cost of some inconvenience and taking
responsibility for explicitly releasing hazard pointers instead of depending on their automatic
release by the library.

3.6. Thread-Local Storage
As discussed above the use of thread-local storage has pros and cons. It reduces or eliminates
contention in acquiring hazard pointers and allows wait-free progress (if TLS is wait-free). On
the other hand, it is incompatible with async signal safety, and TLS implementations are not
guaranteed to be non-blocking.

Due to the performance advantages of using TLS, the library implementation should allow the
programmer to choose implementation paths that benefit from TLS when suitable, and avoid
TLS when incompatible with the use case.

8/17

3.7. Exceptions
The sources of exceptions in implementations of the hazard pointers method are related to
memory allocation, in particular the allocation of hazard pointers. All other operations can avoid
memory allocation exceptions at some performance cost in the worst case when allocation is
impossible.

Programmers concerned about such exceptions (for example, in real-time code) can guarantee
that hazard pointer operations will not throw if they meet certain conditions. Implementations
can guarantee that the total number of hazard pointers never shrinks throughout the lifetime of
the associated domain. Therefore, programmers can pre-allocate the needed number of hazard
pointers and then release them, knowing that all these hazard pointers will remain available for
reallocation throughout the lifetime of the associated domain, provided that care is taken in
managing thread caching of hazard pointers. Alternatively, programmers can avoid creating
hazard pointers ahead of time by creating a simple wait-free allocator that manages sufficient
memory to allocate a large number of hazard pointers (and therefore is guaranteed not to throw)
and provide this allocator as an argument to the hazard pointer constructor.

3.8. Primitives and Dependencies
The hazard pointers method requires the use of atomic primitives on pointers and ​size_t
variables and memory ordering primitives. The method has no direct dependencies on any
system calls.

The method in its purely non-blocking form incurs a store-load fence. This fence becomes
unnecessary if the method is used in more restricted cases such as inside critical sections
protected by a lock, or by using interrupts to enforce ordering only when a remover thread is
about to inspect the hazard pointers.

4. Design Overview
Based on the above considerations and with a goal of maximizing usability, we believe that
hazard pointer implementations should have the following features or policies:

● Use TLS for performance but provide a path that is TLS-free.
● Provide an end-to-end lock-free path.
● Allow custom allocation and deallocation function objects.
● Support an end-to-end async signal safe path.
● Support multi-process sharing.
● Support multiple hazard pointer domains.
● Support dynamic hazard pointer allocation.

9/17

● Do not throw exceptions except in hazard pointer allocation, and provide use conditions
that guarantee that hazard pointer constructors will not throw exceptions.

● Support hazard pointer caching.
● Support automatic release of hazard pointers.
● Support an interface that can avoid the store-load fence when not needed.

The above diagram shows the main components of the hazard pointer method's design:
● Hazard pointer domains​: Multiple domains may be present concurrently. Threads may

participate in multiple domains in different roles as users, removers, or both. There is
one default domain per process.

● The ​hazard pointer control block​ is the defining component of a domain. It manages
the ​set of all hazard pointer records​ in the domain, and the ​set of retired objects​ that
are protected by these hazard pointers at some point.

● A ​hazard pointer record​ contains a ​hazard pointer​ and an indicator of whether the
hazard pointer is free or owned by a user thread. Hazard pointers may point to ​removed
objects​ or ​reachable objects in shared structures​.

● User threads​ (optionally) manage a small ​thread cache​ for hazard pointer records.
● Remover threads​ (optionally) manage a ​private set of removed objects​.

10/17

5. Impact on the Standard
Hazard pointers will be a pure library addition (with no core language elements), likely in Clause
30 "Thread support library" [thread], or else located in a new clause titled "Concurrency Support
Library". It does require Clause 29 "Atomic operations library" [atomics] for atomic operations
and memory ordering. Draft standard wording is in P0566R0, ​Proposed Wording for Concurrent
Data Structures: Hazard Pointer and Read-Copy-Update (RCU)​ [4].

6. Existing Implementations and Target Workloads
The hazard pointer method is used in several proprietary products that require high-availability
and non-blocking progress for safe resource management. Other uses are in supporting
lock-free access in key-value stores and applications with soft real-time requirements. The
method is used in the MongoDB/WiredTiger open-source NoSQL database [5].

There are several open source implementations, such as Concurrency Kit [6], Concurrency
Building Blocks [7], libcds [8], and Parallelism Shift [9]. These implementations provide different
interfaces that have their pros and cons. We aim to maximize flexibility, and use variations of the
flexible features of these interfaces and avoid restrictive features, such as supporting regular
threads only, or requiring the numbers of hazard pointers to be fixed beforehand.

7. Comparison of Deferred Reclamation Methods
 Reference

Counting
Split
Reference
Counting

RCU Hazard
Pointers

Unreclaimed
objects

Bounded Bounded Unbounded Bounded

Contention among
readers

Can be very high Can be very high No contention No contention

Traversal progress Either blocking
or lock-free with
limited

Lock-free Wait-free Lock-free.

11/17

reclamation

Reclamation
progress

Either blocking
or lock-free with
limited
reclamation

Lock-free Blocking Lock-free

Traversal speed

Atomic updates Atomic updates No or low
overhead

Store-load fence

Reference
acquisition

Unconditional Unconditional Unconditional Conditional

Automatic
reclamation

Yes Yes No No

Advantages

8. Proposal for Adding a Hazard Pointer Library

8.1. hazptr_domain​ class
This class is the root of all shared hazard pointer data structures in a domain. There is exactly
one instance of this class in each domain. It is included in the library header in order to allow the
programmer to create and control hazard pointer domains.

class hazptr_domain {

 public:

 constexpr explicit hazptr_domain(

 memory_resource* = get_default_resource()) noexcept;

 ~hazptr_domain();

 hazptr_domain(const hazptr_domain&) = delete;

 hazptr_domain(hazptr_domain&&) = delete;

 hazptr_domain& operator=(const hazptr_domain&) = delete;

 hazptr_domain& operator=(hazptr_domain&&) = delete;

};

hazptr_domain& default_hazptr_domain() noexcept;

The ​constructor​ takes a pointer to std::pmr::memory_resource (C++17) as a parameter to
allocate hazard pointer structures.

12/17

The ​destructor​ destroys all shared hazard pointer structures and reclaims all retired objects
that are managed by this domain.

This class does not allow copy and move constructors and assignment operators.

The function ​default_hazptr_domain()​ returns a reference to the default hazptr_domain.

8.2. hazptr_obj_base​ class template
This is the base class template for objects protected by hazard pointers.

template <typename T, typename D = std::default_delete<T>>

class hazptr_obj_base {

 public:

 void retire(

 D reclaim = {}, hazptr_domain& domain = default_hazptr_domain());

 void retire(

 hazptr_domain& domain);

};

The ​retire()​ function passes the responsibility for reclaiming this object to the hazptr library.
The function takes up to two optional arguments:

● A reference to a hazptr_domain
● A deleter to be used to reclaim this object when it is safe to do so according to the

hazard pointer system.

The deleter type must be nothrow move-constructible; i.e.,
std::is_nothrow_move_constructible<D>::value​ must be true.

Usage example:

class Node : public hazptr_obj_base<Node, MyReclaimer<Node>> { ...

8.3. hazptr_holder​ class
This template manages all operations on individual hazard pointers (allocation, acquisition,
setting, clearing, and release).

class hazptr_holder {

 public:

 explicit hazptr_holder(hazptr_domain& domain = default_hazptr_domain());

 hazptr_holder(hazptr_holder&& other) noexcept;

13/17

 explicit hazptr_holder(nullptr_t) noexcept;

 ~hazptr_holder();

 hazptr_holder(const hazptr_holder&) = delete;

 hazptr_holder& operator=(const hazptr_holder&) = delete;

 hazptr_holder& operator=(hazptr_holder&&) noexcept;

 explicit bool operator() const noexcept;

 template <typename T>

 T* get_protected(const atomic<T*>& src) noexcept;

 template <typename T>

 bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;

 template <typename T>

 void reset(const T* ptr) noexcept;

 void reset(nullptr_t = nullptr) noexcept;

 void swap(hazptr_holder&) noexcept;

};

void swap(hazptr_holder&, hazptr_holder&) noexcept;

The ​default​ ​constructor​ takes a reference to a hazptr_domain (by default the result of
default_hazptr_domain()). It automatically allocates a hazard pointer that belongs to that
domain. Depending on the memory resource used by the domain, the constructor may throw.
The ​move constructor​ takes a reference to another hazptr_holder ​other​ as an an argument. It
constructs the hazptr_holder with the contents of ​other​ using move semantics, ​other​ becomes
empty.

A ​null constructor​ takes nullptr as an argument and constructs an empty hazptr_holder.

The ​destructor​ automatically clears and releases the owned hazard pointer.

Copy constructor and assignment operator are disallowed.

The ​move assignment operator​ transfers ownership of the pointer originally owned by other,
and other becomes empty if ​*this != other​. Otherwise no effect.

The ​bool operator​ returns true if and only if the hazptr_holder is not empty.

14/17

The member function template ​get_protected()​ takes one argument ​src​, an atomic pointer to
the template parameter ​T​. The function returns a pointer value read from ​src​ that is guaranteed
to be protected by the owned hazard pointer. A protected pointer value is safe to dereference
and comparisons with it are ABA-safe until the hazard pointer is modified or cleared provided
that removers use only the member function ​retire()​ of ​hazptr_obj_base​ to request the
reclamation of ​*ptr​.

The member function template ​try_protect()​ takes two arguments, a pointer value ​ptr​ and
an atomic pointer ​src​. The function returns true only if it can guarantee that the owned hazard
pointer is protecting the pointer ​ptr​. Otherwise, this function returns false.

The member function template ​reset()​ takes one argument, a pointer value ​ptr​. The function
sets the owned hazard pointer to the value ​ptr​. An overload of ​reset()​ that takes an optional
nullptr argument sets the owned hazard pointer to nullptr.

Calls to get_protected(), try_protect(), and reset() must be by a nonempty hazptr_holder.

The member function ​swap()​ takes one argument, a reference to another ​hazptr_holder​. It
swaps ownership of hazard pointers between this and the other hazptr_holder. The owned
hazard pointers remain unmodified during the swap and continue to protect the respective
objects that they were protecting before the swap, if any.

A free function ​swap()​ swaps two ​hazptr_holder​ objects with the same effect as calling the
swap()​ member function of the first with the second as an argument, or vice versa.

9. Sample Interface and Implementation
A C++ Standard Library sample interface code is in Appendix A. An implementation of the
interface with use examples is available at
(https://github.com/facebook/folly/blob/master/folly/experimental/hazptr/).
Multiple implementation options are supported: with and without thread caching of hazard
pointers, and with and without use of asymmetric memory barriers. The most reader performant
implementation uses thread caching and asymmetric memory barriers.

10. Appendix A: Draft Library Interface Header

#include <atomic>

#include <memory>

#include <memory_resource>

15/17

class hazptr_domain {

 public:

 constexpr explicit hazptr_domain(

 memory_resource* = get_default_resource()) noexcept;

 ~hazptr_domain();

 hazptr_domain(const hazptr_domain&) = delete;

 hazptr_domain(hazptr_domain&&) = delete;

 hazptr_domain& operator=(const hazptr_domain&) = delete;

 hazptr_domain& operator=(hazptr_domain&&) = delete;

};

hazptr_domain& default_hazptr_domain();

template <typename T, typename D = std::default_delete<T>>

class hazptr_obj_base : private hazptr_obj {

 public:

 void retire(

 D reclaim = {}, hazptr_domain& domain = default_hazptr_domain());

 void retire(

 hazptr_domain& domain);

};

class hazptr_holder {

 public:

 explicit hazptr_holder(

 hazptr_domain& domain = default_hazptr_domain());

 hazptr_holder(hazptr_holder&& other) noexcept;

 explicit hazptr_holder(nullptr_t) noexcept;

 ~hazptr_holder();

 hazptr_holder(const hazptr_holder&) = delete;

 hazptr_holder& operator=(const hazptr_holder&) = delete;

 hazptr_holder& operator=(hazptr_holder&& other) noexcept;

 explicit bool operator() const noexcept;

 template <typename T>

 T* get_protected(const atomic<T*>& src) noexcept;

 template <typename T>

 bool try_protect(T*& ptr, const atomic<T*>& src) noexcept;

16/17

 template <typename T>

 void reset(const T* ptr) noexcept;

 void reset(nullptr_t = nullptr) noexcept;

 void swap(hazptr_holder&) noexcept;

};

void swap(hazptr_holder&, hazptr_holder&) noexcept;

11.Acknowledgement
Thanks SG1 and SG14 members for reviewing earlier versions of the proposal. We especially
thank JF Bastien, Jeffrey Yasskin, Pablo Halpern, Lee Howes, David Goldblatt, Dave Watson,
Xiao Shi for their comments and suggestions for the interface.

12. References
[1] Paul E McKenney. "Structured deferral: synchronization via procrastination."
Communications of the ACM​ 56.7 (2013): 40-49.
[2] Maged M Michael. "Hazard pointers: Safe memory reclamation for lock-free objects." ​Parallel
and Distributed Systems, IEEE Transactions on​ 15.6 (2004): 491-504.
[3] P0232R0,, P. McKenney, M. Wong, M. Michael, A Concurrency ToolKit for Structured
Deferral or Optimistic Speculation, Feb. 2016.
[4] P0566R1, Proposed Wording for Concurrent Data Structures: Hazard Pointer and
Read-Copy-Update (RCU), June 2017.
[5] https://github.com/wiredtiger/wiredtiger/blob/master/src/support/hazard.c.
[6] http://concurrencykit.org/
[7] http://amino-cbbs.sourceforge.net/
[8] http://libcds.sourceforge.net/
[9] http://www.johantorp.com/

17/17

