
P0208r1 | Copy-Swap Transaction 1 of 5 | P a g e

WG21 Document Number: P0208r1
Date: 2017-06-17
Intended audience: LEWG
Pablo Halpern <phalpern@halpernwightsoftware.com>

Copy-Swap Transaction

Changes since R0

 Changed title to “Copy-Swap Transaction” from “Copy-Swap Helper.”

 Proposes a transaction-like function, copy_swap_transaction instead of a factory

function copy_swap_helper.

 Adds get_allocator function template.

 Removed formal wording that relates to memory_resource*. A better approach,

described in P0339, eliminates the need for special handling of memory_resource*.

Motivation

A favorite idiom for writing exception-safe code is to employ the copy-swap idiom. In general,
the copy-swap idiom involves making a copy of an object and modifying the copy. Once the
modification is successful and does not throw an exception the original object and the copy
are swapped. If an exception is thrown during modification of the copy, however, the original
object is left unchanged, providing what is often called the strong guarantee of exception
safety. In pseudo-C++, the copy-swap idiom for safely modifying an object x of type T is:

try {
 T xprime(x);
 modify xprime here (might throw)
 …
 using std::swap;
 swap(x, xprime); // Does not throw
} catch (etc.) { … }

A variation of this idiom is commonly used to get the strong guarantee in the implementation
of a copy-assignment operator:

T& T::operator=(const T& rhs)
{
 T(rhs).swap(*this); // T::swap does not throw
 return *this;
}

The problem with this idiom is that if T is an allocator-aware type, the allocator instance
used for the copy might not be the correct allocator instance to use for the swap. In the

assignment-operator example, if rhs has a different allocator than *this, it is likely that the

temporary copy T(rhs) will have the same allocator as rhs and a different allocator than

*this. Unless the allocator type has the propagate_on_container_swap trait set to true (a

mailto:phalpern@halpernwightsoftware.com
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0339r3.pdf

P0208r1 | Copy-Swap Transaction 2 of 5 | P a g e

rarity), the swap becomes undefined behavior and is likely to fail, not with an exception, but
with an assertion failure or worse.

The general copy-swap idiom for modifying a single object of type T is less likely to fail
because most allocators do propagate on copy construction. Such propagation is not

guaranteed, however; pmr::polymorphic_allocator in the fundamentals TS being an

example of an allocator that does not propagate on copy construction of the container.

Summary of proposal

This paper proposes four function templates that can be used to solve the problems above
and have the added benefit of annotating the use of the copy-swap idiom in user code. The
functions use metaprogramming to determine if a type uses an allocator and, if so, it ensures
that the temporary copy used for the copy-swap idiom uses the correct allocator. Because
the presence or absence of an allocator is determined at compile-time, these function
templates are usable in generic code, where the type being swapped may or may not use an
allocator. The general copy-swap idiom using these facilities would look like the following:

try {
 std::copy_swap_transaction(x, [&](auto& xprime){
 modify xprime here (might throw)
 …
 });
} catch (etc.) { … }

Note that a single call to copy_swap_transaction may be used to modify multiple variables

safely, as follows:

try {
 std::copy_swap_transaction(x, y, [&](auto& xprime, auto& yprime){
 modify xprime here (might throw)
 modify yprime here (might throw)
 …
 });
} catch (etc.) { … }

The assignment operator example would be rewritten as follows:

T& T::operator=(const T& rhs)
{
 return swap_assign(*this, rhs);
}

The swap_assign feature takes care of the boilerplate of exception-safe assignment and also

handles the somewhat complicated allocator propagation traits.

Also proposed is a get_allocator(x) function template that returns the allocator for x, if it

has one, and the default allocator otherwise. This primitive functionality is useful for
implementing the other two templates, but is useful on its own and is thus described
explicitly.

P0208r1 | Copy-Swap Transaction 3 of 5 | P a g e

Target publication

These functions can be targeted for C++20 or the third revision of the Library Fundamentals
TS (LFTS-3) or both, as determined by the LEWG. It should be noted that the problem being
solved has existed since C++11 and that the facility being proposed has been fully
implemented.

Implementation experience

The functions described in this paper have been fully implemented and well tested. The code
(including test driver) is available at https://github.com/phalpern/uses-allocator.

Alternative design

An earlier revision of this paper proposed two other function templates:

 copy_swap_helper(x) returned a copy of x using x’s allocator even if the allocator

would not normally propagate on copy construction.

 copy_swap_helper(x, y) returned a copy of x using y’s allocator.

Both functions would work as normal copy constructors if x does not use an allocator.

The one-argument form of copy_swap_helper was removed because the

copy_swap_transaction function expressed the idiom more cleanly.

The two-argument form of copy_swap_helper was removed because the only known use for

such a function was for the copy-swap assignment idiom, and even then it did the wrong
thing in the presence of some propagation traits. Thus, I encapsulated the entire idiom,

including the correct use of propagation traits, into swap_assign, instead.

The functionality of both versions of copy_swap_helper can be implemented simply using

the make_using_alloctor template proposed in P0591, combined with get_allocator,

proposed here. This fact further reduces the motivation for copy_swap_helper.

Proposed Wording

This text is relative to the Library Fundamentals TS Version 2 DTS (LFTS 2), N4617.

Requests for guidance are highlighted yellow.

Add the following feature test macro to section 1.6 [general.feature.test] of the LFTS:

Doc no. Title Primary
Section

Macro Name Suffix Value Header

P0208 Copy-Swap
Transaction

TBD copy_swap_transaction 201707 <experimental/memory>

Add to header <experimental/memory> synopsis:

namespace std {

namespace experimental {

inline namespace fundamentals_v3 {

https://github.com/phalpern/uses-allocator
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0591r2.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4617.pdf

P0208r1 | Copy-Swap Transaction 4 of 5 | P a g e

template <class T>

 see-below get_allocator(T&& x);

template <class T, class... Rest>

 void copy_swap_transaction(T& t, Rest&&... rest);

template <class T>

 T& swap_assign(T& lhs, decay_t<T> const& rhs);

template <class T>

 T& swap_assign(T& lhs, decay_t<T>&& rhs);

}

}

}

Add the following descriptions for the above function templates:

template <class T>

 see-below get_allocator(T&& x);

Returns: x.get_allocator() if that expression is well-formed; otherwise allocator<byte>{}.

Consistent with P0339, it might be better if the default return value were

pmr::polymorphic_allocator<byte>{}. Thoughts?

It is probably reasonable to have get_allocator() be a customization point. What wording

magic is needed for that?

template <class T, class... Args>

 void copy_swap_transaction(T& t, Args&&... args);

Requires: The args parameter pack shall have at least one element. All but the last element of args

shall be lvalue references comprising a partial parameter pack V&...v. Each element of v... shall be

swappable ([swappable.requirements] in C++17). The last element of args shall be an object f of type F

such that std::forward<F>(f)(v...) is well-formed.

Effects: Let v1, v2, …, vN of types V1&, V2&, …, VN&, be the first N elements of parameter

pack args..., where N is one less than sizeof…(Args), and let value f, of type F, be the last

argument in args.... For each i in 1…N, constructs vi’ of type Vi by uses-allocator construction

with allocator get_allocator(vi) and argument vi ([allocator.uses.construction] in C++17).

Invokes std::forward<F>(f)(v1’, v2, …, vN’). Then for i in N…1, invokes swap(vi,

vi’) in the context described by the swappable requirement.

Throws: nothing unless a constructor, swap, or invocation of f throws. [Note: Using arguments for which

swap does not throw ensures that the values referenced by the first N arguments are modified only if f

succeeds without throwing. – end note]

template <class T>

 T& swap_assign(T& lhs, decay_t<T> const& rhs);

Effects: swap(lhs, R), where R is defined as follows:

— If get_allocator(lhs) is well formed and uses_allocator_v<T,

decltype(get_allocator(lhs))> is true,

P0208r1 | Copy-Swap Transaction 5 of 5 | P a g e

o If
allocator_traits<decltype(lhs.get_allocator())>::propagate_

on_container_copy_assignment::value is true, then R is an object of type

T constructed by uses-allocator construction ([allocator.uses.construction] in the C++

standard) with allocator get_allocator(rhs) and argument

std::forward<T>(rhs). [Note: if the allocator’s

propagate_on_container_swap trait is false, then the swap(lhs, R) might

produce unexpected results, including undefined behavior – end note]

o Otherwise R is an object of type T constructed by uses-allocator construction

([allocator.uses.construction] in the C++ standard) with allocator

get_allocator(lhs) and argument rhs.

— Otherwise, R is rhs.

Returns: lhs

Remarks: The invocation of swap occurs in the context described for the swappable requirements

([swappable.requirements] in C++17).

template <class T>

 T& swap_assign(T& lhs, decay_t<T>&& rhs);

Effects: swap(lhs, R), where R is defined as follows:

— If get_allocator(lhs) is well formed and uses_allocator_v<T,

decltype(get_allocator(lhs))> is true,

o If
allocator_traits<decltype(get_allocator(lhs))>::propagate_o

n_container_move_assignment::value is true, then R is

T(std::move(rhs)). [Note: if the allocator’s

propagate_on_container_swap trait is false, then the swap(lhs, R) might

produce unexpected results, including undefined behavior – end note]

o Otherwise R is an object of type T constructed by uses-allocator construction

([allocator.uses.construction] in the C++ standard) with allocator

get_allocator(lhs) and argument std::move(rhs).

— Otherwise, R is rhs.

Returns: lhs

Remarks: The invocation of swap occurs in the context described for the swappable requirements

([swappable.requirements] in C++17).

