
Default == is >, default < is < so

Document number: P0354R0
Date: 2016-05-15
Audience: EWG
Reply-to: Tony Van Eerd. order at forecode.com

tl;dr:

Contrary to P0221R1, we should not generate operator<() by default.

Motivation/Explanation

class chair { ... };

We can all easily imagine what is in class chair. It probably tells you the colour, size, shape, material,
number of legs, etc,... of the chair.

chair1 == chair2

What does chair1 == chair2 mean?

It is unsurprising to want to compare two chairs and determine that they are, for salient properties,
equal. Default memberwise equality works fine. In fact, when I learned C circa 1987, I tried to
compare two structs for equality, and was saddened that it didn't work. I think that default
generation of == (and !=), a la P0221R1, is great, and for most classes both obvious and useful.

chair1 == chair2

Now, what does chair1 < chair2 mean?

What does it mean to ask "is this chair less than that chair?" ? Is the chair smaller? Shorter? Lighter?
Less legs? I think this question has little to no meaning. Less red? (imagine that the first member of
chair is colour in RGB format.)

operator<() on chair is meaningless.

I understand an ordering might be useful, in particular when used with std::map (but maybe you
should use unordered_map?), etc. But I don't appreciate meaningless API being added to all my
classes. (Why not add a calculate_volume function that doesn't calculate the volume of the chair,
or a calculate_pi() function, which doesn't calculate pi?) Why not memberwise operator+ and
divide by scalar? At least then I could maybe calculate the average chair, which makes more sense
than the least chair.

Ordering can be useful, but it shouldn't be tied to less. "Representative ordering" and "less" are
different concepts, and each has their uses. They should not be conflated - at least not by default.

How bad is it?

If operator<() is generated by default, I will recommend, as a coding guideline, that the average
class opt-out of this default generation. My default will be to disable the default. I'll go as far as
allowing, maybe even recommending, a MACRO for this purpose. It's that bad.

Ways Out

Just don't it. Don't generate operator<().1.
Make default generation of operator<() opt in. This has been discussed in the past. I'm not2.
against it. I'd still like == to be default-in, opt-out. Because == almost always makes sense, <
almost always doesn't.
Generate a specialization of std::order instead (which would then be used by std::map et al).3.
std::map should never have defaulted to std::less but rather it should have defaulted to some
std::order (which could defer to std::less if/when std::order wasn't specialized). See
Alisdair's P0181R0 for further work (on the library side) in a similar direction.
A new operator - the ordering operator. I know no one likes new syntax except the one4.
proposing it, but... For now, to avoid bikeshedding, imagine it is operator<@ (see footnotes). The
new operator could be generated by default - without ambiguity of meaning, and used by
std::map et al (for now, it could be called by std::less if/when < is invalid, and/or called by
std::order and have map use that, etc).

The difference between 3 and 4 is just whether the language should generate library specializations,
or whether it should stick to language-level syntax.

I recommend 1 followed by 3 or 4. ie for C++17, just don't generate operator<() and then introduce
a new operator post C++17. These are better than option 2 (opt-in) because order is worthwhile,
even when "less" doesn't make sense - it is a separate concept, and should be kept separate.

Conclusion(s)

Most importantly, please don't generate operate<() by default. It is just wrong.1.
Please take some other path towards default ordering - one of the paths suggested above, or2.
some other path, just not default generated operator<().

The rest of this paper discusses why separation of "less" and "representative order" is important,
and why generating representative order some other way than operator<() would be worthwhile,
but the main point of the paper has already been made: we should not generate operator<() by
default.

The rest of this paper is probably post-C++17 discussion.

Other uses

I think "less" and "representative order" are fundamentally different, and if we had both as

independent concepts, we would find many natural uses. The first use I found, years ago, was an
immutable_string class. (Adobe, for example, had at least 2 classes like this.) For immutable_string,
all instances that are equal (by string equality) can share the same storage for the string. (Like
copy-on-write, but you never write!) The storage address becomes the implementation of ==.
Address is also useful for implementing < when used in std::map (if/when lookup is more
important than order). But you still want < to be string-based less, for other uses, ie for display in a
UI. Separating "order" from "less", and std::order from std::less and operator<> from operator<
solves these issues.

I think there are many other uses, waiting to be found. The problem is common enough that many
well-respected C++ leaders (eg Sean Parent, Alex Stepanov,...) have a stock recommendation:
implement std::less but not operator< in cases where you want order, but < is meaningless. It is a
common/real issue.

Take back std::less

Implementing std::less but not operator< is a viable work-around, but it is a hack. The point of
std::less was for it to be the function-object form of operator<; exploiting the use of std::less as
an extension point for std::map et al perverts the meaning of std::less. If std::less was meant to
be an extension point, it probably should have been named differently, and have been specific to
containers - ie std::order, for example. (Note also that these specializations of std::less may be
prohibited by the standard - 17.6.4.2.1 "only if the declaration depends on a user-defined type and
the specialization meets the standard library requirements for the original template" - what are the
requirements of std::less? - it is defined to return "x < y", so if returning x < y is a requirement....)

By separating "less" from "representation order", we can keep std::less as having the single
meaning of "calls x < y". I would in fact go further, and deprecate allowing users to specialization
std::less. It should only have one meaning.

Conclusion(s) again

Most importantly, please don't generate operate<() by default. It is just wrong.1.
Please take some other path towards default ordering - one of the paths suggested above, or2.
some other path, just not default generated operator<().

Footnotes

It is tempting to suggest that the new ordering operator should be "less-dot" ie <. because adding●

a dot seem to be in vogue, but in this case <. would just lead to ambiguities like .1 < .0, as would
.< and .<. :-)
< works (but < doesn't - ie p < *q vs p<*q).●

<> works (even though that means != in some languages). It can be read to mean "some order,●

not necessarily greater or less, but some order"
I would NOT recommend any of the addition operators that could be made from <@ such as <@=●

etc.

