
1

P0076r2 Vector and Wavefront Policies

Document number: P0076r2
Date: 2016-05-28
Project: Programming Language C++ (WG21)
Subgroup/Audience LEWG
Reply to:

Arch D. Robison <arch.robison@intel.com>
Pablo Halpern <pablo.g.halpern@intel.com >
Robert Geva <robert.geva@intel.com>
Clark Nelson <clark.nelson@intel.com>

 Jens Maurer <jens.maurer@gmx.net>

Vector and Wavefront Policies
Contents

1 Motivation .. 2

2 Change History .. 3

2.1 Changes from R1 to R2 ... 3

2.2 Changes from R0 to R1 ... 3

3 Execution policies for vectorization ... 3

3.1 Unsequenced and vector execution policies ... 3

3.2 Extensibility of Policies .. 4

4 Wavefront Application .. 5

4.1 Horizontal Matching .. 6

4.2 Ordering Rules for Wavefront Application .. 7

4.2.1 High-level view ... 7

4.2.2 Wavefront ordering for loops within the element access function 7

5 Functions for strengthening wavefront ordering ... 8

5.1 vec_off .. 8

5.2 ordered_update ... 9

6 Alternative Designs Considered .. 9

6.1 Previous discussions ... 10

6.2 The promise and disappointments of the explicit ordering-point model 10

6.3 Existing Practice ... 11

6.4 Using vec with Other Algorithms ... 12

6.5 Ordered scatters ... 12

7 C++ Proposed Wording ... 12

7.1 Feature test macros .. 12

7.2 Header <experimental/execution_policy> synopsis .. 13

7.3 Add new execution policies.. 13

7.4 Execution policy objects .. 13

7.5 Exception reporting behavior .. 13

2

P0076r2 Vector and Wavefront Policies

7.6 Wavefront Application ... 13

7.7 Effect of execution policies on algorithm execution .. 15

7.8 Header <experimental/algorithm> synopsis .. 16

7.9 vec_off .. 16

7.10 ordered_update ... 16

8 Acknowledgement .. 18

9 References .. 18

1 Motivation

Vector parallelism is insufficiently supported by the current Parallelism TS (N4507).

The Parallelism TS does offer the par_vec policy, and there is some interest in a

variant that restricts execution to a single thread; the result of such a restriction is the

unseq policy proposed in this paper. Alas, this policy, though it allows a vectorization

(exploiting vector hardware), it is excessively permissive and fails to express the

necessary requirements for an important set of vectorizable loops of practical interest.

As defined in N4507, par_vec allows:

“The invocation of element access functions ... are permitted to execute in an unordered fashion

in unspecified threads and unsequenced with respect to one another within each thread. [Note:

this means that multiple function object invocations may be interleaved on a single thread. – end

note]”

Merely constraining par_vec to a single thread still allows permissive interleaving that

would give undefined semantics to loops in the aforementioned set.

Here is a short example that falls in the gap, using for_loop from P0075 with

vector_execution_policy proposed in this paper:

void binomial(int n, float y[]) {

 for_loop(vec, 0, n, [&](int i) {

 y[i] += y[i+1];

 });

}

The call to for_loop is equivalent, except with more relaxed sequencing, to:

void binomial(int n, float y[]) {

 for(int i=0; i<n; ++i)

 y[i] += y[i+1];

}

The for_loop example cannot safely use unseq or par_vec instead of vec, because that

would result in unsequenced reads and writes of the same element of y when n2.

Subsequent sections show some more examples that require vec instead of unseq.

The proposals in this paper are targeted for a future parallelism TS.

3

P0076r2 Vector and Wavefront Policies

2 Change History

2.1 Changes from R1 to R2

 As requested by SG1, removed ordered scatter rule. See section 6.5 for more

details.

 Added non-normative clarifying notes to the description of wavefront

execution.

2.2 Changes from R0 to R1

 Changed formal specification of wavefront ordering to use a much simpler
horizontal match formulation instead of labeling each evaluation with a LIFO
context.

 Added ordered_update and its helper class ordered_update_t.

 Changed vec_off(f) to return result of f() instead of discarding it.

 Separated the controversial “ordered scatters” rule from the rest of the proposal,
so that it can be voted on separately.

3 Execution policies for vectorization

3.1 Unsequenced and vector execution policies

This paper proposes adding two new execution policies to the Parallelism TS,

assuming the adoption of P0075. These policies add support for execution with

relaxed sequencing restricted to a single OS thread:

 An unsequenced_execution_policy class and constant unseq analogous to the

other policy types and constants in the Parallelism TS, with sequencing

semantics similar to parallel_vector_execution_policy, but limited to a single

OS thread.

 A vector_execution_policy class and constant vec that is similar to the policy

above, but guarantees stronger sequencing, compatible with classic work in the

field of vectorization. This policy is restricted to the indexed-based loop

templates proposed in P0075.

The first policy has strictly weaker sequencing guarantees than the second. The

following lattice summarizes the strength of their guarantees relative to each other and

existing policies, with the weakest guarantees at the top.1

1We also recommend that the existing par_vec be renamed par_unseq since the top lattice

point’s relaxations are the union of the relaxations of par and unseq, or dually the top lattice

point’s guarantees are the intersection of the guarantees of par and unseq.

4

P0076r2 Vector and Wavefront Policies

No compiler extensions are necessary for correct implementation; since an

implementation is free to implement any policy higher on the lattice via a policy lower

on the lattice, serial execution is always allowed. The goal, however, is for the

implementation to exploit parallel hardware, especially vector units, for improved

performance. Some combination of OpenMP directives and vendor-specific hooks are

likely to be used for implementing algorithms with either policy.2

The ability to constrain execution to a single OS thread is commonly useful for

avoiding resource interference with multi-threading designs.

Having two new policies, instead of one, and restricting vec to for_loop resolves a

fundamental conflict. The unseq policy is generally useful and straightforward to

define for the parallel algorithms in the Parallelism TS, but fails to capture guarantees

critical to an important class of loops. Conversely, vec is critically useful for an

important class of loops and definable for for_loop, but seems impractical to

generalize to the parallel algorithms in a way that is both well-defined and beneficial to

exploit.

3.2 Extensibility of Policies

Though we don’t propose it for standardization at this time, we note that

vector_execution_policy could be subclassed to provide additional information from

the programmer to the compiler. Providing this information as static const member of

integral type would enable cognizant compilers to find it a compile time, as in the

following example:

struct my_policy: vector_execution_policy {

 static const int safelen = 8;

 static const bool vectorize_remainder = true;

};

for_loop(my_policy(), 0, 1912, [&](int i) {

 Z[i+8] = Z[i]*A;

});

2In particular, we implemented a performant version of vector reductions for for_loop in

LLVM by adding special intriniscs.

seq

par
unseq

par_vec

vec

5

P0076r2 Vector and Wavefront Policies

Here, safelen is a semantic piece of information, similar to a safelen clause in

OpenMP 4.0, that says that the (i+9)th3 application of the function cannot start until

the ith and prior applications complete. For programmers to rely on this in portable

code would require standardizing it.

In contrast, vectorize_remainder is a performance hint, and could remain vendor

specific.

4 Wavefront Application

Our proposed vector_execution_policy gives programmers classic “vector loop”

evaluation order guarantees when used with function template for_loop from P0075.

We abstract the evaluation order by defining “wavefront4 application”. Intuitively, the

wavefront application of a function f over a sequence of argument lists applies f to each

argument list in a way that keeps preceding applications from falling behind later

application. This property distinguishes our vector_execution_policy from our

unsequenced_execution_policy. The wavefront property has two benefits:

 It enables exploiting “forward dependencies”, a common technique in classic

vector codes.

 It implies that vector_execution_policy is safe to use on any loop that could be

auto-vectorized.

For example, consider:5

void f() {

 extern float U[], V[], A, B;

 for_loop(vec, 1, 999, [&](int i) {

 V[i] = U[i+1]*A;

 U[i] = V[i-1]+B;

 });

}

For this code to have the same side effects with vec as with the seq policy, it is

imperative that the load of U[k] preceded a store into U[k] in a later iteration, and

likewise that the store into V[k] precede the load of V[k] in a later iteration. Our

wavefront semantics coupled with the subscript patterns give those guarantees. With

the more relaxed ordering of our unsequenced_execution_policy (or the existing

parallel_execution_policy or parallel_vector_execution_policy) the programmer

3 Yes, 9 and not 8. The wavefront semantics prevent the oldest iteration in flight from getting

behind the newest iteration in flight.

4The term “wavefront” for similar orderings has a long history in the field of vector and parallel

programming. An example is Figure 7 from reference [4].

5The example is a toy, but the dependence pattern is similar to those in staggered finite-time

finite-difference codes.

6

P0076r2 Vector and Wavefront Policies

would need to fission the loop into two loops, with the consequent penalty of

increasing consumption of memory bandwidth.

Wavefront application provides the necessary conditions for vectorization on classic

“long vector” machines in the tradition of Cray and Convex, vectorization on “short

vector” architectures (such as Intel® SSE, Intel® AVX, ARM® NEON, and Freescale®

AltiVec), as well as software pipelining and unroll-and-interleave optimizations,

without introducing relaxations that would be harmful for some loops.

4.1 Horizontal Matching

Precisely defining “ahead” and “behind” can be tricky for functions with control flow

that repeats evaluation of an expression. We solve the problem by refining the

sequencing rules from N4237 to handle cyclic control flow. Our refinement uses

“horizontal matching” that distinguish evaluating the same expression or statement

during different trips though a loop or in different invocations of a callee.

Furthermore, unstructured control flows (gotos and switch statements like in “Duff’s

device”) are handled by temporarily disabling synchronization guarantees across

iterations, but in a way that limits the disabling to within a certain scope. While

disabled, the vec policy temporarily acts like the unseq policy (i.e., the sequencing

guarantees are relaxed).

Horizontal matching is fully defined and further explained in the proposed wording

section (Section 7.6). For the next section, it suffices to understand that horizontal

matching formalizes an intuitive notion of matching up corresponding evaluations in a

sensible way. For example, given this code:

for_loop(par, 0, 4, [&](int k){

 if (k % 2)

 f(k);

 else

 g(k);

 h(k);

}

the rules horizontally match each row of evaluations shown in the table below.

Expression k=0 k=1 k=2 k=3

 x % 2 0 % 2 1 % 2 2 % 2 3 % 2

 f(x) f(1) f(3)

 g(x) g(0) g(2)

 h(x) h(0) h(1) h(2) h(3)

Executions of iterative statements are matched by matching each iteration in turn,

giving up after at least one loop quits. Unstructured control-flow turns off matching

until it becomes structured again. We defer the details of when this happens to the

proposed wording section (7.6).

https://en.wikipedia.org/wiki/Duff%27s_device
https://en.wikipedia.org/wiki/Duff%27s_device

7

P0076r2 Vector and Wavefront Policies

4.2 Ordering Rules for Wavefront Application

4.2.1 High-level view

The invocations of element access functions in our for_loop template from P0075

invoked with an execution policy of type vector_execution_policy are permitted to

execute in an unordered fashion in the calling thread, unsequenced with respect to

one another within the calling thread, but restricted by the “wavefront application”

ordering constraints formalized in the proposed wording in Section 7.6.

Figure 1 sketches the rule for the ith and jth invocations of the element access function,

where i<j. The subscripted letters denote expression evaluations or statement

executions. Dashed lines denote “horizontally matched”; solid arrows denote

“sequenced before”. Our rules require that if either black partial triangle exists, then

the blue sequenced-before relationship must be enforced to complete the triangle.

Figure 1 Horizontally matched and sequenced before relationships

Thus the jth iteration cannot get ahead of the ith iteration.

4.2.2 Wavefront ordering for loops within the element access function

Consider the following vector for_loop invocation with a serial for loop nested within

the element-access function (a lambda expression, in this case):

for_loop(vec, 0, 2, [&](int i) {

 for(int m=i; m<2; ++m)

 A[m][i] = 1;

 B[i]++;

});

The definition of horizontal matching distinguishes the three evaluations of m<2 and

two evaluations of A[m][i] as five separate evaluations (in the case of i=0), as if the

inner loop were unrolled. The dashed lines in Figure 2 show the horizontally matched

relationships and the solid arrows show some of the resulting sequenced-before

relationships. Evaluations of ++m and 1 were omitted for brevity. Left side are

evaluations for i=0; right side for i=1. As traditional with such diagrams, we omit

some of the arrows inferable via transitive closure.

Ai

Bi Bj

Aj Ai

Bj

8

P0076r2 Vector and Wavefront Policies

Two evaluations are horizontally matched if their vertical antecedents (see proposed

wording in Section 7.6) are horizontally matched. It is critical that vertical antecedent,

unlike sequenced before, is not a transitive relationship, so the first evaluation of m<2

in the first column is not horizontally matched with the second evaluation of m<2 in the

second column because their vertical antecedents are not horizontally matched.

If evaluations for different iterations of the inner loop were not distinguished,

evaluation of the expression m<2 would be sequenced before A[m][i] across

applications and vice-versa, resulting in arrows from every expression evaluation on

the left to every expression evaluation on the right, which would imply serial execution

order.

Note that the rules do produce sequenced-before relationships from each evaluation

within the nested loop to evaluation of B[i]++ immediately following the loop. This

property is called “re-convergence” and is important for maximizing vector parallelism.

5 Functions for strengthening wavefront ordering

Note that if P0335 is accepted, then the two functions described here would become

member functions of vector_execution_policy::context_token.

5.1 vec_off

It is sometimes useful to force serial sequencing of a region of code. We define a

template function vec_off for this purpose. Here is an example:

extern int* p;

for_loop(vec, 0, n, [&](int i) {

 y[i] += y[i+1];

 if(y[i]<0) {

 vec_off([]{

 *p++ = i;

Figure 2 Horizontal Matching in a loop

m<2

A[m][i]

m<2

A[m][i]

m<2

m<2

A[m][i]

m<2

B[i]++ B[i]++

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0335r0.pdf

9

P0076r2 Vector and Wavefront Policies

 });

 }

});

The updates *p++=i will occur in the same order as if the policy were seq.

5.2 ordered_update

The class template ordered_update_t and function template ordered_update enable

concise expression of some common patterns that require tightening the sequencing

rules. Given an lvalue x of type X, a call ordered_update(x) returns a proxy of type

ordered_update_t<X> that sequences assignment and update operations as if they

were wrapped in vec_off. Example patterns:

ordered_update(A[B[i]]) = f(i); // Scatter

ordered_update(A[B[i]]) += f(i); // Histogram

++ordered_update(A[B[i]]); // Histogram

A[i] = (ordered_update(x) += f(i)); // Prefix scan

if(p(i)) A[ordered_update(j)++] = f(i); // Compress

if(p(i)) v = A[ordered_update(j)++]; // Expand

6 Alternative Designs Considered

At the September, 2014 meeting in Urbana, the model of vector programming

presented here was known as the wavefront model. Its key characteristic is that

dynamically-forward loop-carried dependencies are honored without additional syntax.

Two other models described in Urbana were the lock-step model and the explicit

ordering-point model (also called the explicit barrier model).

N4238 provides a detailed description of these models, but they can be briefly

summarized as follows:

The lock-step model groups consecutive loop iterations into chunks of known size,

with execution proceeding concurrently on all iterations within a chunk as if each

iteration were executing the same operation at the same time (i.e., in lock step).

The wavefront model allows iterations to proceed at different rates, but does not

allow execution of one iteration to “get behind” execution of a subsequent iteration.

Consequently, later iterations can depend on progress guarantees that support

dynamically-forward loop-carried dependencies, as in the following example:

extern float A[N];

parallel::for_loop(0, N - 1, [&](int i){

 // Evaluate f(A[i+1]) and store the result in A[i] occurs

 // before A[i+1] is modified in the next iteration.

 A[i] = f(A[i + 1]);

});

The explicit ordering-point model is similar to the wavefront model except that the

sequencing relationships required to support dynamically-forward loop-carried

dependencies would need to be made explicit by inserting ordering point constructs

into the loop body, e.g., as in the following example.

extern float A[N];

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n4238.pdf

10

P0076r2 Vector and Wavefront Policies

parallel::for_loop(0, N - 1, [&](int i){

 auto tmp = f(A[i + 1]);

 // Ensure that evaluating f(A[i+1]) occurs

 // before A[i+1] is modified in the next iteration.

 parallel::wavefront_ordering_pt();

 A[i] = f(tmp);

});

6.1 Previous discussions

There was consensus before Urbana that we wish our loop-like vectorization construct

to have serial equivalent semantics; i.e., it should be possible to get semantically

correct results by executing the code serially. This goal conflicts with the lock-step

model, which requires explicit chunking of the loop and specifies a very restrictive set

of valid orderings within a chunk. Moreover, lock-step execution has a semantic

whereby results calculated in one iteration of the loop may be required to be available

in a previous iteration of the loop. Because serial ordering is not a valid ordering with

the lock-step model, the lock-step programming model was not considered appropriate

as the primary vector programming paradigm in C++. Both the explicit and wavefront

models do support serial ordering as a valid implementation choice.

The explicit and wavefront models both had consensus support in Urbana, with the

explicit model having slightly stronger support than the wavefront model. The authors

of this paper deliberated long and hard on the issue and, after considering many

issues, the original authors of this proposal agreed that the wavefront model was the

preferred model for vector programming, although the explicit model may still have a

role to play in some sort of low-overhead parallel programming which has yet to be

proposed.

In Kona (October 2015), the library syntax for vector loops proposed in P0075 was well

received, in general, but the question of implicit versus explicit expression of inter-

iteration dependencies remained stalled. Meetings with several hardware vendors and

programmers with vectorization expertise reinforced our conclusion that the wavefront

model, without explicit ordering points, best expresses vectorization as it historically

understood. We did, however, learn that the “ordered scatter” rule in the first version

of this paper is separable from the rest of the proposal in that some existing vector

systems enforce ordered scatters whereas others do not. For this reason, we have

labeled this rule as “optional” and would be willing to vote on it separately.

The remainder of this section is devoted to explaining our rationale for choosing the

wavefront model over the explicit model for vector programming.

6.2 The promise and disappointments of the explicit ordering-point model

Conceptually, the explicit ordering-point model is more like a parallel programming

model than is the wavefront model. An ordering point would act similar to a software

barrier, preventing code motion across the ordering point but allowing it between

ordering points. Theoretically, less care to maintain lexical ordering would be needed

in early phases of compilation thus permitting more liberal transformations.

11

P0076r2 Vector and Wavefront Policies

As we analyzed this claim of better optimization, however, we discovered some issues.

To be sure, there are situations where the claim is true, but there are situations where

a naïve compiler could lose optimization opportunities because the ordering points are

coarse-grained, and might need to be inserted in multiple places. It is possible to

make the ordering points more precise, e.g., by specifying exactly the “to” and “from”

points of inter-iteration dependencies. However, this would complicate the syntax in a

way that we determined was too arcane and would discourage the use of vectorization.

Moreover, some expressions that are handled naturally in the wavefront model but are

difficult to express using explicit ordering points. Assuming arrays A and B and loop

control variable i, the expression,

A[i] = 2*A[i + 1];

requires that A[1] in iteration 1 not be modified until its value has been read in

iteration 0. With the explicit ordering-point model, an ordering point would need to be

inserted between the read of A[i+1] and the modification of A[i]:

auto tmp = A[i + 1];

parallel::wavefront_ordering_pt();

A[i] = 2*tmp;

Not only is the above workaround somewhat ugly and potentially error prone, but it

show one of several warts that are exposed when the explicit ordering-point model is

examined closely. It is not clear how many more such warts are necessary to express

the entire body of vectorizable code.

Finally, the explicit model was touted as a way to express a form of parallelism more

general than SIMD vectorization and software pipelining (e.g., a low-overhead

parallelism that could be implemented on SIMT GPUs). While this idea has some

merit, it is somewhat speculative at this point. It is not clear that the model is

sufficiently rich to express the desired semantics. It is our opinion that a generalized

low-overhead parallelism that can be implemented with multiple mechanisms

(including SIMD) should be the subject of a future proposal, after the issues have been

thoroughly explored, and with a couple of implementations. We should not hold up

support for vectorization pending such exploration.

6.3 Existing Practice

The wavefront model is a formalization of the model that has been used for SIMD and

long-vector architectures for decades [1][2][2]. It has been analyzed and refined in the

technical literature and it has been implemented in many compilers and in many

programming languages including C, C++, and Fortran (via OpenMP as well as

proprietary annotations).

The experts in vector programming are familiar with the wavefront model; to them, it’s

what vector programming looks like. Even if we were to all agree that the explicit

model is easier to learn than the wavefront model (and that is certainly not obvious),

we don’t want to standardize something that is hostile to experts.

12

P0076r2 Vector and Wavefront Policies

6.4 Using vec with Other Algorithms

We considered applying vec to all algorithms in the Parallelism TS but we felt that it

was not clear what that would mean and that assigning an arbitrary meaning would

give the programmer a mistaken impression of usability. We might give vec a meaning

to more algorithms in the future, if and when we identify a reasonable meaning for

them.

6.5 Ordered scatters

Previous revisions of this paper proposed a vec rule to ensure that “scatters” behave in

a way consistent with serial semantics. For example, given:

void f() {

 extern float A[], B[];

 extern int P[], Q[];

 for_loop(vec, 0, 1000, [&](int i) {

 A[P[i]] = B[Q[i]];

 });

}

This “ordered scatter” rule would have ensured that the result is the same as for

replacing vec with seq, even if there are duplicate values in array P. In contrast, this

example has undefined behavior if unseq is used and P has duplicate values, even if all

elements of B are identical, because there would be unsequenced modifications of the

same element of A. The inclusion of this rule would have reduced the uses of

ordered_update and would have made it less likely to create program errors that result

in undefined behavior. However, for architectures that support only unordered scatter

instructions, the compiler would have to prove, for every store, that collisions are not

possible in order to avoid serializing the store. Moreover, although ordered_update

would not have been needed for an assignment like the above, it would still be needed

for read-modify-write operations (e.g., increment), so things like the histogram pattern

would not have benefited from this rule. SG1 voted to remove this rule in at the 2016-

02 meeting in Jacksonville.

7 C++ Proposed Wording

The proposed edits are with respect to the current Parallelism TS assuming the

adoption of P0075.

7.1 Feature test macros

Add the following row to Table 1 in section 1.5 [parallel.general.features]

Name Value Header

__cpp_lib_experimental_vector_execution_policy 201602 <experimental/algorithm>

<experimental/execution_policy>

Editorial note: The format of this section of the TS should probably be changed to

match that of the Library Fundamentals TS, which has a 6-column table that includes

the name of the specific feature and the document number that proposed it.

13

P0076r2 Vector and Wavefront Policies

7.2 Header <experimental/execution_policy> synopsis

Add the following to section [parallel.execpol.synopsis]:

class vector_execution_policy;

class unsequenced_execution_policy;

7.3 Add new execution policies

Rename section 2.6:

2.6 Parallel+VectorUnsequenced execution policy

[parallel.execpol.parunseqvec]

And add the following subsections:

2.x Vector execution policy [parallel.execpol.vec]

class vector_execution_policy{ unspecified };

The class vector_execution_policy is an execution policy type used as a

unique type to disambiguate parallel algorithm overloading and indicate that a

parallel algorithm's execution may be vectorized, but must respect wavefront

evaluation order.

2.x Unsequenced execution policy [parallel.execpol.unseq]

class unsequenced_execution_policy{ unspecified };

The class unsequenced_execution_policy is an execution policy type used as a

unique type to disambiguate parallel algorithm overloading and indicate that a

parallel algorithm's execution may be vectorized.

7.4 Execution policy objects

Add to [parallel.execpol.objects]:

constexpr vector_execution_policy vec{};

constexpr unsequenced_execution_policy unseq{};

7.5 Exception reporting behavior

Edit 3.1 [parallel.exeptions.behavior] paragraph 2 as shown:

 If the execution policy object is of type class vector_execution_policy,

unsequenced_execution_policy, or parallel_vector_execution_policy,

std::terminate shall be called.

7.6 Wavefront Application

New subsection to add to section 4.1. Shaded text is explanatory and not part of the

formal wording.

Wavefront Application [parallel.alg.general.wavefront]

For the purpose of this section, an evaluation is a value computation or side

effect of an expression or execution of a statement. Initialization of a

14

P0076r2 Vector and Wavefront Policies

temporary object is considered a subexpression of the expression that

necessitates the temporary object.

An evaluation A contains an evaluation B if evaluation of B occurs as part of

evaluation of A. [Note: This includes evaluations occurring in function

invocations. -- end note]

Vertical antecedent is an irreflexive, antisymmetric, nontransitive relationship

between two evaluations. For an evaluation A sequenced before an evaluation

B, both contained in the same invocation of an element access function, A is a

vertical antecedent of B if:

 there exists an evaluation S such that:

 S contains A, and

 S contains all evaluations C (if any) such that A is sequenced

before C and C is sequenced before B,

 but S does not contain B, and

 control reached B from A without executing any of the following:

 a goto statement that jumps to a statement outside of S, or

 a switch statement executed within S that transfers control into a

substatement of a nested selection or iteration statement, or

 a throw [Note: even if caught – end note], or

 a longjmp.

[Note: Informally, A is a vertical antecedent of B if A is sequenced immediately

before B or A is nested zero or more levels within a statement S that

immediately precedes B – end note]

The first major bullet above describes what could informally be called “immediately

precedes”. If A and B are part of the same statement, then A is a vertical antecedent

of B only if there is nothing sequenced between them. If A and B are part of different

statements, then A is a vertical antecedent of B if, by popping out zero or more levels

of nesting, you find a point where the statement containing A immediately precedes B.

This is the point of re-convergence after a control-flow divergence.

The second major bullet is needed to handle cases where re-convergence is difficult or

impossible to establish. In those cases, the guarantees degenerate to those provided

by the unsequenced_execution_policy until convergence is re-established at the end of

the block containing both the jump statement and the jumped-to statement.

In the following, Xi and Xj refer to evaluations of the same expression or

statement contained in the application of an element access function

corresponding to the ith and jth elements of the input sequence. [Note: There

might be several evaluations Xk, Yk, etc. of a single expression or statement in

application k, for example, if the expression or statement appears in a loop

within the element access function. – end note]

15

P0076r2 Vector and Wavefront Policies

Horizontally matched is an equivalence relationship between two evaluations of

the same expression. An evaluation Bi is horizontally matched with an

evaluation Bj if:

 neither evaluation has a vertical antecedent, or

 there exist horizontally matched evaluations Ai and Aj that are vertical

antecedents of evaluations Bi and Bj, respectively.

[Note: Horizontally matched establishes a theoretical lock-step relationship

between evaluations in different applications of an element access function. –

end note]

The rules for establishing the horizontally matched relationship match evaluations in

one application with corresponding evaluations in a separate application of the

element access function. The nature of the rules are such that even nested loops work

correctly. For example, given:

 b;

 while (e)

 stmt;

 c;

where bi is a horizontal antecedent of bj. Intuitively, we would expect the kth evaluation

of ei to be the horizontal antecedent of the kth evaluation of ej, assuming both

evaluations happen. Even if one of the invocations executes e more times than the

other, all evaluations of ei and ej are vertical antecedents of ci and cj, respectively, so

the horizontal antecedent relationship is re-established for ci and cj.

Let f be a function called for each argument list in a sequence of argument lists.

Wavefront application of f requires that evaluation Ai be sequenced before

evaluation Bj if:

 Ai is sequenced before some evaluation Bi and Bi is horizontally matched

with Bj, or

 Ai is horizontally matched with some evaluation Aj and Aj is sequenced

before Bj.

[Note: Wavefront application guarantees that parallel applications i and j execute

such that progress on application j never gets ahead of application i. – end note]

[Note: The relationships between Ai and Bi and between Aj and Bj are sequenced

before, not vertical antecedent. -- end note]

The two bullets describe the two triangles in Figure 1.

7.7 Effect of execution policies on algorithm execution

To section 4.1.2 [parallel.alg.general.exec], add:

The invocations of element access functions in parallel algorithms invoked with

an execution policy of type unsequenced_execution_policy are permitted to

execute in an unordered fashion in the calling thread, unsequenced with

respect to one another within the calling thread.

16

P0076r2 Vector and Wavefront Policies

The invocations of element access functions in parallel algorithms invoked with

an execution policy of type vector_execution_policy are permitted to execute in

an unordered fashion in the calling thread, unsequenced with respect to one

another within the calling thread, subject to the constraints of wavefront

application order for the last argument to for_loop or for_loop_strided.

7.8 Header <experimental/algorithm> synopsis

Add the following to 4.3.1 [parallel.alg.ops.synopsis]:

namespace std {

namespace experimental {

namespace parallel {

inline namespace v2 {

template<typename F>

 auto vec_off(F&& f) -> decltype(f());

template<class T>

 class ordered_update_t;

template <class T>

 ordered_update_t<T> ordered_update(T& ref);

}}}}

7.9 vec_off

Add this function to section 4.3 [parallel.alg.ops]:

4.3.x Vec_off [parallel.alg.vecoff]

template<typename F>

 auto vec_off(F&& f) -> decltype(f());

Effects: Evaluates std::forward<F>(f)(). If two calls to vec_off are horizontally matched

within a wavefront application of an element access function over input sequence S, then the

evaluation of f() in the application for one element in S is sequenced before the evaluation f()

in the application for a subsequent element in S; otherwise (for other execution policies) there is

no effect on sequencing.

Returns: the result of the evaluation of f().

7.10 ordered_update

Add these subsections to section 4.3 [parallel.alg.ops]

4.3.x Ordered update class [parallel.alg.ordupdate.class]

template<class T>

class ordered_update_t {

 T& ref; // exposition only

public:

 ordered_update_t(T& loc);

 template <class U>

 auto operator=(U rhs);

17

P0076r2 Vector and Wavefront Policies

 template <class U>

 auto operator+=(U rhs);

 template <class U>

 auto operator-=(U rhs);

 template <class U>

 auto operator*=(U rhs);

 template <class U>

 auto operator/=(U rhs);

 template <class U>

 auto operator%=(U rhs);

 template <class U>

 auto operator>>=(U rhs);

 template <class U>

 auto operator<<=(U rhs);

 template <class U>

 auto operator&=(U rhs);

 template <class U>

 auto operator^=(U rhs);

 template <class U>

 auto operator|=(U rhs);

 auto operator++();

 auto operator++(int);

 auto operator--();

 auto operator--(int);

};

An object of type ordered_update_t<T> is a proxy for an object of type T intended to be used

within a parallel application of an element access function using a policy object of type

vector_execution_policy. Simple assignments and compound assignments to the object are

forwarded to proxied object, but are sequenced as though executed within a vec_off invocation.

ordered_update_t(T& loc);

Effect: Initialize ref with loc.

template <class U>

 auto operator=(U rhs);

Returns: equivalent to vec_off([&]{ return ref = std::move(rhs); })

template <class U>

 auto operator+=(U rhs);

template <class U>

 auto operator-=(U rhs);

template <class U>

 auto operator*=(U rhs);

template <class U>

 auto operator/=(U rhs);

template <class U>

 auto operator%=(U rhs);

template <class U>

 auto operator>>=(U rhs);

template <class U>

 auto operator<<=(U rhs);

template <class U>

 auto operator&=(U rhs);

template <class U>

18

P0076r2 Vector and Wavefront Policies

 auto operator^=(U rhs);

template <class U>

 auto operator|=(U rhs);

Returns: for the respective binary operator op (one of +, -, *, /, %, >>, <<, &, ^, or |),

equivalent to vec_off([&]{ return ref op= std::move(rhs); })

Editorial guidance needed: Is the description of the return value clear? Would it be

better to break it out individually for each of the operators as in:

template <class U>

 auto operator|=(U rhs);

Returns: equivalent to vec_off([&]{ return ref |= std::move(rhs); })

Or even putting the definition in the synopsis:

template <class U>

 auto operator|=(U rhs)

 { return vec_off([&]{ return ref |= std::move(rhs); }); }

My preferred formulation is the one current one, but Hans Boehm indicated a

preference for the last one. I am concerned about verbosity and also about leaving out

the word “equivalent”, since some architectures have instructions that allow, for

example, ordered increment operations on a vector operand without serializing.

auto operator++();

Returns: equivalent to vec_off([&]{ return ++ref; })

auto operator++(int);

Returns: equivalent to vec_off([&]{ return ref++; })

auto operator--();

Returns: equivalent to vec_off([&]{ return --ref; })

auto operator--(int);

Returns: equivalent to vec_off([&]{ return ref--; })

4.3.x Ordered update function template [parallel.alg.ordupdate.func]

template <class T>

 ordered_update_t<T> ordered_update(T& ref);

Returns: ordered_update_t<T>(ref)

8 Acknowledgement

Olivier Giroux provided the ideas behind “horizontally matched” and “vertical

antecedent”.

9 References

[1] CONVEX Architecture Handbook, Document No. 080-000120-000, PDF page 222, implies that the
scatter instruction has serial semantics.

[2] Lee Higbie, Vectorization and Conversion of Fortran Programs for the CRAY-1 (CFG) Compiler,
Undated, but seems to be from Cray-1 timeframe. PDF page 15 describes vectorization of a loop
with a forward lexical dependence.

http://bitsavers.informatik.uni-stuttgart.de/pdf/convex/080-000120-000_CONVEX_Architecture_Handbook_1984.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/cray/CFT/2240207_Vectorization_and_Conversion_of_Fortran_Programs_for_the_CFT_Compiler.pdf

19

P0076r2 Vector and Wavefront Policies

[3] Cray Assembly Language (CAL) for Cray X1 Systems Reference Manual, Section 2.6 says “Otherwise,
the Cray X1 system guarantees that B will reference memory after A only if: ... A and B are elements
of the same ordered vector scatter or zero-stride vector store.”

[4] Michael Wolfe, “Loop Skewing: The Wavefront Method Revisited”, Int. J. of Parallel Programming
15(4), 1986, pp. 279-293.

[5] Robert Geva and Clark Nelson, “Language Extensions for Vector loop level parallelism”, WG21
N4237.

[6] Arch D. Robison, Pablo Halpern, Robert Geva and Clark Nelson, “Template Library for Index-Based
Loops”, WG21 P0075R1.

http://docs.cray.com/books/S-2314-51/html-S-2314-51/x3724.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4237.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0075r1.pdf

