
1

P0075r1 Template Library for Parallel For Loops

Document number: P0075r1

Date: 2016-02-12

Audience: Concurrency study group (SG1)

Reply to:

Arch D. Robison <arch.robison@intel.com>
Pablo Halpern <pablo.g.halpern@intel.com >
Robert Geva <robert.geva@intel.com>
Clark Nelson <clark.nelson@intel.com>

Template Library for Parallel For Loops

Contents

1 Introduction .. 1

2 Changes since r0 ... 2

3 Summary of proposal .. 2

3.1 Range and counted variants .. 3

3.2 Strided variants .. 3

3.3 Reductions .. 4

3.4 Inductions (Linear Variables) .. 5

4 Alternative Design Choices .. 6

4.1 Leaving out inductions .. 6

4.2 Leaving out reductions .. 6

4.3 Returning “Live out” values of inductions and reductions 6

5 Future enhancements ... 7

5.1 More general reductions .. 7

5.2 Non-commutative reductions .. 7

6 Formal Wording ... 7

6.1 Feature-testing macro ... 7

6.2 Additions to <experimental/algorithms> synopsis 7

6.3 New text for reductions ... 8

6.4 New text for inductions ... 10

6.5 New text for parallel::for_loop .. 11

1 Introduction

In order to maximally exploit parallelism, a parallel loop construct must be able to

predict iterations, even before the loop begins executing. Thus, parallel loops are

necessarily more restrictive than the general-purpose (serial) for loop at the C++

language level. The looping construct in the existing parallelism TS,

parallel::for_each, while convenient for traversing a sequence of elements in

parallel, would require tricky and convoluted code in order to handle a number of

common patterns:

2

P0075r1 Template Library for Parallel For Loops

 Traversing multiple sequences in the same loop, e.g., A[i] = B[i].

 Referring to elements before or after the current element, e.g., iter[0] =

iter[1].

 Performing computations based on the position in the loop, e.g., A[i] += i % 2

? 1 : -1;

Critically, the patterns above are often needed for exploiting vector parallelism, as

described in P0076. This paper proposes support for all aforementioned patterns as a

pure-library extension. Our proposal is pure-library extension of the Parallelism TS,

and adds support for indexed-based loops with reduction and induction variables.

Target: Next revision of the Parallelism TS

2 Changes since r0

 Added for_loop_n and for_loop_n_strided.

 Added serial versions of all new algorithms, since none of them currently have
serial equivalents.

 Added more rationale for reduction and inductions to store final values as side
effects.

 Added precision and improved the formatting of the formal wording.

3 Summary of proposal

The proposal adds the following new function templates to the Parallelism TS:

 for_loop, for_loop_strided, for_loop_n, and for_loop_n_strided implement

loop functionality over a range specified by integral or iterator bounds. For the

iterator case, these algorithms resemble for_each from the Parallelism TS, but

leave to the programmer when and if to dereference the iterator.

 reduction provides a flexible way to specify reductions in conjunction with

for_loop.

 reduction_plus, reduction_multiplies, etc. create reduction descriptors for

common cases such as addition, multiplication, etc.

 induction provides a flexible way to specify indices or iterators that vary

linearly with the primary index of the loop.

Here is a short example:

void saxpy_ref(int n, float a, float x[], float y[]) {

 for_loop(seq, 0, n, [&](int i) {

 y[i] += a*x[i];

 });

}

The call to for_loop is equivalent to:

3

P0075r1 Template Library for Parallel For Loops

void saxpy_ref(int n, float a, float x[], float y[]) {

 for (int i=0; i<n; ++i)

 y[i] += a*x[i];

}

The loop can be parallelized by replacing seq with par. Our library interface permits

the “loop index” to have integral type or be an iterator. As with the current Parallelism

TS, the iterator case does not require a random-access iterator. For example,

for_loop enables the following general implementation of for_each from the

Parallelism TS.

template <class ExecutionPolicy, class InputIterator, class Function>

void for_each(ExecutionPolicy&& exec, InputIterator first,

 InputIterator last, Function f) {

 for_loop(exec, first, last, [&](InputIterator i){f(*i);});

}

When exec is not sequential_execution_policy, random-access iterators may yield

better performance because unaggressive implementations are likely to fall back to

using a serial loop for other kinds of iterators.

3.1 Range and counted variants

For each proposed function template, there are two variants: A range-based version

and a counted version. The normal (range based) version takes a starting index (or

iterator) and an ending index (or iterator) and iterates over the half-open range [start,

end). The counted variants take a starting index (or iterator) and a count of iterations.

Because the two variants are nearly impossible to distinguish using overloading alone,

the latter have “_n” in their names, in the same way as for_each and for_each_n are

distinguished by name.

3.2 Strided variants

Our proposal also adds a function template for strided loops. Though these can be

expressed from unit-stride loops and mathematical machinations, we think code is

clearer when loops can be expressed in natural strided form. To alleviate template

overload trickiness and potential hazards, the function templates for strided loops

have different names from their unstrided variants. Again, the situation is somewhat

akin to the motivations for giving for_each and for_each_n different names.

The stride parameter follows the second bound on the index space. The example

below sets c[10], c[13], c[16], and c[19] to true.

for_loop_strided(par, 10, 20, 3, [&](int k) {

 c[k] = true;

});

Negative strides are allowed. The following sets the same elements of c to true as the

previous example.

for_loop_strided(par, 19, 9, -3, [&](int k) {

 c[k] = true;

});

4

P0075r1 Template Library for Parallel For Loops

3.3 Reductions

A reduction is the parallel application of a mutating operation on a variable in such a

way that races are avoided (without locks) and the final value of the variable is the

same as it would be if the computation were performed serially. This is accomplished

by giving each concurrent task a different view of the variable and combining the

separate views at the end of the computation.

The for_loop template allows specification of one or more reduction variables, with a

syntax inspired by OpenMP, but done with a pure library approach. Here is an

example:

float dot_saxpy(int n, float a, float x[], float y[]) {

 float s = 0;

 for_loop(par, 0, n, reduction(s,0.0f,std::plus<float>()),

 [&](int i, float& s_) {

 y[i] += a*x[i];

 s_ += y[i]*y[i];

 });

 return s;

}

Here, reduction is a function that returns an implementation-specific reduction object

that encapsulates three things:

 a reduction lvalue s

 the identity value for the reduction operation

 the reduction operation

In the lambda expression, i is a value of the loop index, and s_ is a reference to a

private view containing a partial sum. There is one such reference for each reduction

argument to for_loop, and association is positional. (We suspect that, in practice,

most programmers will name the local reference just s, deliberately hiding the

identically-named and closely-related variable used to create the reduction.) The

example is equivalent, except with more relaxed sequencing and reduction order, to

the following serial code:

float serial_dot_saxpy (int n, float a, float x[], float y[]) {

 float s = 0;

 for (int i=0; i<n; ++i) {

 y[i] += a*x[i];

 s += y[i]*y[i];

 }

 return s;

}

For convenience, we supply shorthand functions for common reductions. For

example:

reduction_plus(s)

is equivalent to:

reduction(s,0.0f,std::plus<float>())

5

P0075r1 Template Library for Parallel For Loops

Note that floating-point operations may be re-ordered and re-associated, thus exposing

round-off errors that differ from the serial execution and, for certain execution

policies, may vary from run to run. This difficulty with floating-point arithmetic is well

known and consistent with other parallelism systems such as OpenMP.

3.4 Inductions (Linear Variables)

A linear induction value is a value that varies linearly with the loop iteration count.

Although an induction value can always be computed from the iteration count,

requiring the programmer to do so is inconvenient and error prone.

The for-loop template allows specification of induction variables, using a scheme

somewhat similar to that for reduction variables. Here is an example with three

induction variables:

float* zipper(int n, float* x, float *y, float *z) {

 for_loop(par, 0, n,

 induction(x),

 induction(y),

 induction(z,2),

 [&](int i, float* x_, float* y_, float* z_) {

 *z_++ = *x_++;

 *z_++ = *y_++;

 });

 return z;

}

Here, induction is a function that returns an implementation-specific type that

encapsulates two things:

 An initial value (lvalue or rvalue) for the induction (e.g. x)

 An optional stride for that value. Here the stride is implicitly 1 for x and y, and

explicitly 2 for z.

In the lambda expression, i is a copy of the loop index, and x_, y_, z_ are initialized

to x+i, y+i, and z+2*i respectively. As with reduction arguments, association is

positional. A function can have both reduction and induction arguments. Note that

induction values are passed to the lambda-function by value, whereas for reduction

variables they are passed by modifiable reference. When the for_loop finishes, any

lvalues used to initialize the inductions are set to the same live-out values as if the

loop had been written sequentially. For example, the following serial code returns the

same value as the previous example:

float* zipper(int n, float* x, float *y, float *z) {

 for (int i=0; i<n; ++i) {

 *z++ = *x++;

 *z++ = *y++;

 }

 return z;

}

6

P0075r1 Template Library for Parallel For Loops

4 Alternative Design Choices

Below, we describe some alternatives that were considered and why we are not

proposing them.

4.1 Leaving out inductions

Inductions could be omitted from this proposal, relying on users to write the

equivalent math. However, doing so complicates parallelizing codes. We note that

OpenMP has linear clauses for similar reason.

4.2 Leaving out reductions

The current Parallel STL has support for reductions. However, these are tightly tied to

specific algorithms and require “tuple-fying” values (and defining reduction operations

on the tuples) for code that needs to perform more than one reduction. Our approach

brings the flexibility that OpenMP users have enjoyed from the start.

4.3 Returning “Live out” values of inductions and reductions

During the October 2014 meeting in Kona, there was concern that the lvalue passed

into the reduction and induction functions is modified (i.e., there is a side effect)

when the for_loop completes. The argument was made that this could cause

compromise thread safety via “action at a distance,” and we were encouraged to

consider alternative designs such as returning the final values as a tuple.

Our analysis indicates that the risk of races is no more significant than any other

function call that takes an argument by reference. The for_loop itself does not modify

the reduction or induction variable concurrently, and the user will be aware, by the

very nature of the operation, that the value is modified. In general, induction and

reduction variables will be local variables in the same scope as the for_loop function

call, and there is no reason to believe that they will be any more likely than other

variables to be shared by other threads or parallel tasks.

Furthermore, returning the values as a tuple is cumbersome, error-prone, and just as

dangerous as modifying them through a reference. Consider:

int a = 100;

float b = 1.0;

tie(a, b) = parallel::for_loop(0, 100, reduction_plus(b), induction(a),

 [&](int i, float& b, int a){

 // Code that uses i and a and updates b.

});

Because of the limitation of using a library syntax, the reduction and inductions

variables must be specified at least twice: (1) as arguments to reduction and

induction and (2) as arguments to the lambda expression. Returning the final values

as a tuple would require that they be specified a third time, and, in fact, the above

code has an error in that the tie expression has its arguments reversed. Moreover,

the tie expression stores the references in a way that is no less race prone than the

original proposed formulation. For these reasons, we elected to leave the definitions of

reduction and induction unchanged in this respect.

7

P0075r1 Template Library for Parallel For Loops

5 Future enhancements

5.1 More general reductions

This proposal does not describe a concept for the value returned by the reduce

function template. It might be desirable in the future for users to be able to create

more sophisticated reductions, e.g., that use allocators or generate identity objects in

interesting ways. By leaving the return value of the reduction function unspecified, we

leave room for defining a user-extensible type/concept system in a future revision.

5.2 Non-commutative reductions

Some parallel languages (such as Cilk Plus) allow reductions on non-commutative

operations such as list append. The runtime library is required to combine partial

results such that the left-to-right ordering is preserved. For thread-parallelism, this

presents very little overhead, but for vectorization the overhead can be significant. In

this proposal, we do not make any such guarantees, but a future proposal might add

reductions that are specifically tagged as non-commutative.

6 Formal Wording

The proposed edits are with respect to the current DTS for Parallelism TS, N4507.

6.1 Feature-testing macro

Add to section [parallel.general.features], Table 1, the following row:

Doc no. Title Primary

Section

Macro Name Suffix Value Header

P0075r1 Template Library
for Parallel For
Loops

4.3 parallel_for_loop 201602 <experimental/memory>

6.2 Additions to <experimental/algorithms> synopsis

Add the following text to to Header <experimental/algorithm> synopsis

[parallel.alg.ops.synopsis]:

namespace std {

namespace experimental {

namespace parallel {

inline namespace v2 {

// Support for reductions (see [parallel.alg.reductions])

template <typename T, typename BinaryOp>

 see-below reduction(T& var, const T& identity, BinaryOp&& combiner);

template <typename T>

 see-below reduction_plus(T& var);

template <typename T>

 see-below reduction_multiplies(T& var);

template <typename J>

 see-below reduction_bit_and(J& var);

template <typename J>

 see-below reduction_bit_or(J& var);

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf

8

P0075r1 Template Library for Parallel For Loops

template <typename J>

 see-below reduction_bit_xor(J& var);

template <typename T>

 see-below reduction_min(T& var);

template <typename T>

 see-below reduction_max(T& var);

// Support for inductions (see [parallel.alg.inductions])

template <typename T>

 see-below induction(T&& var);

template <typename T, typename S>

 see-below induction(T&& var, S stride);

// for_loop [parallel.alg.forloop]

template <typename I, typename... Rest>

 void for_loop(decay_t<I> first, I last, Rest&&... rest);

template <typename ExecutionPolicy, typename I, typename... Rest>

 void for_loop(ExecutionPolicy&& exec,

 decay_t<I> first, I last, Rest&&... rest);

template <typename I, typename S, typename... Rest>

 void for_loop_strided(decay_t<I> first, I last,

 S stride, Rest&&... rest);

template <typename ExecutionPolicy,

 typename I, typename S, typename... Rest>

 void for_loop_strided(ExecutionPolicy&& exec,

 decay_t<I> first, I last,

 S stride, Rest&&... rest);

template <typename I, typename Size, typename... Rest>

 void for_loop_n(I first, Size n, Rest&&... rest);

template <typename ExecutionPolicy,

 typename I, typename Size, typename... Rest>

 void for_loop_n(ExecutionPolicy&& exec,

 I first, Size n, Rest&&... rest);

template <typename I, typename Size, typename S, typename... Rest>

 void for_loop_n_strided(I first, Size n, S stride, Rest&&... rest);

template <typename ExecutionPolicy,

 typename I, typename Size, typename S, typename... Rest>

 void for_loop_n_strided(ExecutionPolicy&& exec,

 I first, Size n, S stride, Rest&&... rest);

}}}}

6.3 New text for reductions

Add the following text to to Non-Numeric Parallel Algorithms [parallel.alg.ops] before

[parallel.alg.foreach]:

Reductions [parallel.alg.reductions]

Each of the function templates in this section returns a reduction object of unspecified

type having a value type and encapsulating an identity value for the reduction, a

combiner function object, and a live-out object from which the initial value is obtained

and into which the final value is stored.

9

P0075r1 Template Library for Parallel For Loops

A parallel algorithm uses reduction objects by allocating an unspecified number of

instances, called views, of the reduction’s value type. [Note: an implementation might,

for example, allocate a view for each thread in its private thread pool – end note] Each

view is initialized with the reduction object’s identity value, except that the live-out

object (which was initialized by the caller) comprises one of the views. The algorithm

passes a reference to a view to each application of an element-access function,

ensuring that no two concurrently-executing invocations share the same view. A view

can be shared between two applications that do not execute concurrently, but

initialization is performed only once per view.

Modifications to the view by the application of element access functions accumulate as

partial results. At some point before the algorithm returns, the partial results are

combined, two at a time, using the reduction object’s combiner operation until a single

value remains, which is then assigned back to the live-out object. [Note: in order to

produce useful results, modifications to the view should be limited to commutative

operations closely related to the combiner operation. For example if the combiner is

plus<T>, incrementing the view would be consistent with the combiner but doubling it

or assigning to it would not. – end note]

template <typename T, typename BinaryOp>

 see-below reduction(T& var, const T& identity, BinaryOp&& combiner);

Requires: T shall meet the requirements of CopyConstructible and

MoveAssignable. The expression var = combiner(var, var) shall be well

formed.

Returns: Returns a reduction object of unspecified type having a value type of T.

When the return value is used by an algorithm, the reference to var is used as

the live-out object, new views are initialized to a copy of identity, and views are

combined by invoking the copy of combiner, passing it the two views to be

combined.

template <typename T>

 see-below reduction_plus(T& var);

template <typename T>

 see-below reduction_multiplies(T& var);

template <typename J>

 see-below reduction_bit_and(J& var);

template <typename J>

 see-below reduction_bit_or(J& var);

template <typename J>

 see-below reduction_bit_xor(J& var);

template <typename T>

 see-below reduction_min(T& var);

template <typename T>

 see-below reduction_max(T& var);

Requires: shall meet the requirements of CopyConstructible and

MoveAssignable.

Returns: Returns a reduction object of unspecified type having a value type of T.

When the return value is used by an algorithm, the reference to var is used as

10

P0075r1 Template Library for Parallel For Loops

the live-out object, new views are initialized to a copy of the identity shown in

Table 1, and views are combined by applying the combiner operation from Table

1.

Table 1 -- Reduction identities and reduction-ops

function identity combiner operation
reduction_plus T() x + y

reduction_multiplies T(1) x * y

reduction_bit_and ~(T()) x & y

reduction_bit_or T() x | y

reduction_bit_xor T() x ^ y

reduction_min var std::min(x, y)

reduction_max var std::max(x, y)

[Example:

The following code updates each element of y and sets s to the sum of the

squares.

float s = 0;

for_loop(vec, 0, n,

 reduction(s, 0.0f, std::plus<float>()),

 [&](int i, float& t) {

 y[i] += a*x[i];

 t += y[i]*y[i];

 }

});

– end example]

6.4 New text for inductions

Inductions [parallel.alg.inductions]

Each of the function templates in this section return an induction object of unspecified

type having a value type and encapsulating an initial value i of that type and,

optionally, a stride.

For each element in the input range, a looping algorithm over input sequence S

computes an induction value from an induction variable and ordinal position p within

S by the formula i + p * stride if a stride was specified or i + p otherwise. This

induction value is passed to the element access function.

If the var argument to induction is a non-const lvalue, then that lvalue becomes the

live-out object for the returned induction object. For each induction object that has a

live-out object, the looping algorithm assigns the value of i + n * stride to the live-out

object upon return, where n is the number of elements in the input range.

template <typename T>

 see-below induction(T&& var);

template <typename T, typename S>

 see-below induction(T&& var, S stride);

11

P0075r1 Template Library for Parallel For Loops

Returns: Each function returns an induction object with value type T, initial

value var, and (if specified) stride stride. If T is an lvalue of non-const type, var

is used as the live-out object for the induction object; otherwise there is no live-

out object.

6.5 New text for parallel::for_loop

For loop [parallel.alg.forloop]

template <typename I, typename... Rest>

 void for_loop(decay_t<I> first, I last, Rest&&... rest);

template <typename ExecutionPolicy, typename I, typename... Rest>

 void for_loop(ExecutionPolicy&& exec,

 decay_t<I> first, I last, Rest&&... rest);

template <typename I, typename S, typename... Rest>

 void for_loop_strided(decay_t<I> first, I last,

 S stride, Rest&&... rest);

template <typename ExecutionPolicy,

 typename I, typename S, typename... Rest>

 void for_loop_strided(ExecutionPolicy&& exec,

 decay_t<I> first, I last,

 S stride, Rest&&... rest);

template <typename I, typename Size, typename... Rest>

 void for_loop_n(I first, Size n, Rest&&... rest);

template <typename ExecutionPolicy,

 typename I, typename Size, typename... Rest>

 void for_loop_n(ExecutionPolicy&& exec,

 I first, Size n, Rest&&... rest);

template <typename I, typename Size, typename S, typename... Rest>

 void for_loop_n_strided(I first, Size n, S stride, Rest&&... rest);

template <typename ExecutionPolicy,

 typename I, typename Size, typename S, typename... Rest>

 void for_loop_n_strided(ExecutionPolicy&& exec,

 I first, Size n, S stride, Rest&&... rest);

Requires: I shall be an integral type or meet the requirements of an input

iterator type. Size shall be an integral type and n shall be non-negative. S shall

have integral type and stride shall have non-zero value. stride shall be

negative only if I has integral type or meets the requirements of a bidirectional

iterator. The rest parameter pack shall have at least one element, comprising

objects returned by invocations of reduction ([parallel.alg.reduction]) and/or

induction ([parallel.alg.induction]) function templates followed by exactly one

element invocable element-access function, f. If exec is specified, f shall meet

the requirements of CopyConstructible; otherwise, f shall meet the

requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, as described below,

with additional arguments corresponding to the reductions and inductions in

the rest parameter pack. The length of the input sequence is:

— n if specified, otherwise

12

P0075r1 Template Library for Parallel For Loops

— last – first if neither n nor stride is specified, otherwise

— (last-first-1)/stride+1 if stride is positive, and (first-last-

1)/stride+1 times if stride is negative.

The first element in the input sequence is specified by first. Each subsequent

element is generated by adding stride to the previous element, if stride is

specified, otherwise by incrementing the previous element. [Note: As described

in the C++ standard, section [algorithms.general], arithmetic on non-random-

access iterators is performed using advance and distance. – end note] [Note: The

order of the elements of the input sequence is important for determining ordinal

position of an application of f, even though the applications themselves may be

unordered. – end note]

Along with an element from the input sequence, for each member of the rest

parameter pack excluding f, an additional argument is passed to each

application of f as follows:

— If the pack member is an object returned by a call to a reduction function
listed in section [parallel.alg.reductions], then the additional argument is
a reference to a view of that reduction object.

— If the pack member is an object returned by a call to induction, then the

additional argument is the induction value for that induction object
corresponding to the position of the application of f in the input
sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

	1 Introduction
	2 Changes since r0
	3 Summary of proposal
	3.1 Range and counted variants
	3.2 Strided variants
	3.3 Reductions
	3.4 Inductions (Linear Variables)

	4 Alternative Design Choices
	4.1 Leaving out inductions
	4.2 Leaving out reductions
	4.3 Returning “Live out” values of inductions and reductions

	5 Future enhancements
	5.1 More general reductions
	5.2 Non-commutative reductions

	6 Formal Wording
	6.1 Feature-testing macro
	6.2 Additions to <experimental/algorithms> synopsis
	6.3 New text for reductions
	6.4 New text for inductions
	6.5 New text for parallel::for_loop

