
Terms and definitions related to threads

Document number: N4231
Date: 2014-10-10
Authors: Torvald Riegel, Clark Nelson
Reply-to: Torvald Riegel <triegel@redhat.com>

1 “Thread” seems to be used ambiguously

There seems to be quite a bit of disagreement—or just confusion—about what a “thread”
refers to in the context of the standard. Similarly, there is further disagreement about
how we should name and define related things such as execution mechanisms that are
lighter-weight than std::thread.

The goal of this paper is to try to disambiguate the term “thread” and improve the
terminology for related concepts such as execution agents. A secondary goal is to find
definitions that can be shared with ISO C.

We will summarize the definitions in the current standard and the current version of
the WG14 CPLEX TS (N1862)1, and propose a terminology based on execution agents.

2 Definitions in the current standard

“Thread of execution” This is the most basic definition of a thread. It is defined as
“a single flow of control within a program” (see §1.10p1). sequenced-before is defined
exactly for a thread of execution (see §1.9p13). So, another way to find out whether
something is a thread of execution would be to ask whether sequenced-before is defined
for it.

std::thread This is specified as a component “that can be used to create and manage
threads” (see §30.1p1 and §30.3p1), where “threads” explicitly refers to the definition of
“threads of execution” (see §30.1p1). std::thread specifically “provides a mechanism
to create a new thread of execution” (see §30.3.1p1).

A non-normative note states that std::thread is “intended to map one-to-one with
operating system threads”, but it is not mentioned whether it is also intended for the OS

1http://open-std.org/JTC1/SC22/WG14/www/docs/n1862.pdf

http://open-std.org/JTC1/SC22/WG14/www/docs/n1862.pdf


thread to have the same lifetime as the respective std::thread instance, which would
matter for programs that want to use OS-thread features that are affected by this (e.g.,
OS-thread-provided thread-specific storage with destruction on OS thread exit).

“Thread” In the standard, “thread” is a short-hand for a thread of execution, not for
std::thread (see §1.10p1: “thread of execution (also known as a thread)”).

The standard is a little sloppy in two places, where it refers to std::thread or uses
the term “thread” but cites §30.3 when specifying things that seem to apply to threads of
execution in general; nonetheless, we believe this is simply due to std::thread currently
being the only mechanism by which a thread of execution can be created.

“Execution agent” In §30.2.5.1p1, an execution agent is defined as “an entity such as
a thread that may perform work in parallel with other execution agents”. It is also noted
that “implementations or users may introduce other kinds of agents such as processes
or thread-pool tasks”.

The term “thread” in this definition, in contrast with the rest of the standard, likely
means std::thread because a thread of execution is a flow of control, not primarily a
means of execution. Also noteworthy is that thread-pool tasks are given as an example
of an execution agent, not whole thread pools; this aligns well with std::thread being
a mechanism to create (and implicitly trigger execution of) one thread of execution.

3 WG14 CPLEX TS (N1862)

“Thread of execution” This is defined in roughly the same way as in C++ (at least
that is the explicitly stated intent).

“OS thread” This is defined as a “service provided by an operating system for execut-
ing multiple threads of execution concurrently”. It is not quite clear to me whether this
intends to state multiple threads of execution can be executed using one OS thread, or
simply whether the purpose of OS threads is to have several of them running concur-
rently.

“Thread” The TS allows this as a short-hand for either thread of execution or OS
thread, and points out the ambiguity.

“Execution agent” The definition in the TS is very much the same as in the C++
standard, except that an OS thread is given as example of an execution agent, and that
it explicitly mentions that several threads of execution work in parallel (“entity, such as
an OS thread, that may execute a thread of execution in parallel with other execution
agents”).

“Task” This is defined as a “thread of execution within a program that can be correctly
executed asynchronously with respect to (certain) other parts of the program”.

N4231 2



4 A terminology proposal based on execution agents

The set of terms and definitions we will outline next use the existing notion of an
execution agent as a placeholder for all the mechanisms that execute threads of execution.
It does not require significant changes to the standard, just makes the notion of an
execution agent more important and clarifies a few things.

“Thread of execution” Keep the standard’s definition. In other words, it is a distinct
flow of control that is part of the program, and a program can have many threads of
execution.

“Execution agent” Every mechanism that executes a particular thread of execution
is called an execution agent (EA). Note that this is the name of the conceptual entity
that executes threads of execution, not an implementation artifact; this is similar to us
speaking about threads of execution instead of the combination of an instruction pointer
and a stack.

There is a one-to-one correspondence between an EA (i.e., an EA instance) and a
thread of execution. This makes it easier to define properties such as progress for an EA
because it doesn’t lump together the execution of several threads of execution.

An EA is responsible for (or, determines under which circumstances) the thread of
execution is allowed to make progress; informally, it does so by executing the flow of
control on whatever underlying resource it may use. See N4156 for the different classes
of progress guarantees (i.e., concurrent, parallel, weakly parallel).

Because of the one-to-one mapping between EA and thread of execution, one might
consider the EA term to be an unnecessary indirection. However, it adds properties to
the notion of a flow of control (i.e., a thread of execution), such as the progress guarantees
or other semantics related to how the flow of control is executed. Also, it conveniently
avoids the misunderstanding that the short-hand of “thread” for “thread of execution”
would refer to std::thread. It should make it more obvious that also other things than
std::thread or a simple OS thread could execute flows of control (e.g., SIMD lanes in
vectorized execution).

We already have the notion of execution agents in the standard, albeit with a slightly
different description and not as widely used.

std::thread This is a mechanism to create and manage an EA with execution prop-
erties that are equal to those offered by a typical OS thread. One could also roughly
say that std::thread is an EA, but this would put in my opinion too much focus on
whether the interface that std::thread offers is the defining property of an EA. On the
other hand, std::thread is already close to a one-shot EA-execution mechanism (i.e.,
one thread of execution), so it would not do much harm to say that it is an EA.

“Thread” We believe this should remain to be the short-hand form for “thread of
execution”; most of the statements about multi-threaded programs or multi-threaded

N4231 3



behavior in the standard apply to or arise for threads of execution—in other words, the
mere presence of concurrency. These are independent of questions related to progress,
which we can define for the EAs.

While keeping the short-hand form does not avoid all potential confusion in the stan-
dard, having to write “multi-thread-of-execution program” would probably be awkward.
We think that teaching that “thread” refers to “threads of execution” in general should
be doable. Also, we suppose that in many cases where “thread” could be misunder-
stood as std::thread due to the context, we could use the term “execution agent” to
disambiguate.

“Task” We do not have a strong opinion on what a “task” created by a parallelism
abstraction (e.g., a parallel loop) should be. We lean towards saying that a task is an
execution agent launched by the parallelism abstraction, but we could also choose to
let it be one of the threads of execution that the parallelism abstraction splits the work
into.

Examples

• A std::thread is (roughly) an EA. (More precisely, it contains so little around
an EA to justify saying that it is an EA).

• A SIMD loop launches EAs.

• A thread pool is not an EA, but can be used to launch EAs.

• An executor can launch EAs.

• An OS thread could or could not be the base on which an EA is implemented; for
example, a thread of execution on a GPU is often not related to any particular
thread on the host CPU.

• Because an EA is not necessarily implemented based on an OS thread (and thus,
std::thread if we want to accept the non-normative note in §30.3 as a require-
ment), it depends on the kind of EA whether, for example, OS-specific thread-
specific store is available.

N4231 4


	``Thread'' seems to be used ambiguously
	Definitions in the current standard
	WG14 CPLEX TS (N1862)
	A terminology proposal based on execution agents

