apply() call a function with arguments from a tuple

Peter Sommerlad

2013-10-08
Document Number: | N3802
Date: 2013-10-08
Project: Programming Language C++

1 History

1.1 integer_sequence

N3658 and its predecessor N3493 introduced integer_sequence facility and provide
application of this features, for example apply () that is proposed in this paper.

1.2 Observations

There is a lot of history I am unaware of and several implementations posted on Stack-
Overflow. Also the C++14 CD contains an implementation of apply() as an example
of std::integer_sequence in [intseq.general].

1.3 Using tuplevar... or operator...

Mike Spertus made me aware of the proposed language extension to form a parameter
pack from a tuple, i.e., by overloading an operator. .. which might make the provision
of apply() moot. However, up to now, no such feature has been proposed to the
standard committee and it is unclear if it would make it into C++17. Even if it would,
it would just make the implementation of apply trivial.

2 Introduction

Tuples are great for generic programming with variadic templates. However, the stan-
dard does not define a general purpose facility that allows to call a function/func-
tor/lambda with the tuple elements as arguments. Such a feature should be provided,
because it is useful (at least for me). It even is given as an example of std::integer_-
sequence in [intseq.general] coming from N3658.

1



2 N3802 2013-10-08

2.1 Rationale

It is easy to create tuples from variadic templates either from types directly as std: : tuple<PACK. . .>
or with std: :make_tuple() or std::forward_as_tuple() the opposite mechanism of
passing a tuple’s elements as function arguments is not available.
Some suggested to not use the name apply () and reserve that to a mechanism like
INVOKE in the standard library and use apply_from_tuple() instead.

2.2 Open Issues to be Discussed

It is open, if apply () should get a noexcept (noexcept (xxx) ) specification delegating to
the underlying effect. Advice from library working group was requested, but it seems that
it shouldn’t get one, because library only provides noexcept specifications for ”special”
functions, like ctors or swap.

Should apply() be constexpr to make it applicable in meta programming or con-
cepts? LEWG advice is required.

2.3 Acknowledgements

Acknowledgements go to Jonathan Wakely for providing integer_sequence and providing
apply() as the example in the working draft.

Acknowledgements go to Mike Spertus for making me aware of the ... pack formation
approaches.

Acknowledgements to the following persons on the c+-+std-lib reflector for their
feedback and encouragement: Jonathan Wakely, Andy Sawyer, Stephan T. Lavavej,
Jared Hoberock, and Tony van Eerd.

3 Possible Implementation

The following implementation suggestion was derived from N3658, N3690, and Stack-
Overflow (http://stackoverflow.com/a/12650100) and some simplification. It actually
seems to work with current clang -std=c++1y.

template <typename F, typename Tuple, size_t... I>
decltype(auto) apply_impl(F&& f, Tuple&& t, index_sequence<I...>) {
return forward<F>(f) (get<I>(forward<Tuple>(t))...);

}

template <typename F, typename Tuple>

decltype(auto) apply(F&& f, Tuple&& t) {
using Indices = make_index_sequence<tuple_size<decay_t<Tuple>>::value>;
return apply_impl(forward<F>(f), forward<Tuple>(t), Indices{});

}



N3802 2013-10-08 3

4 Proposed Library Additions

Add the following declaration in [tuple.general] in the synopsis under the group element
access:

template <typename F, typename Tuple, size_t... I>
decltype (auto)
apply_impl(F&& f, Tuple&& t, index_sequence<I...>) // exposition only

{
return forward<F>(f) (get<I>(forward<Tuple>(t))...);
}

template <typename F, typename Tuple>
decltype(auto) apply(F&& f, Tuple&& t);

Append the following to section [tuple.elem] after paragraph 11.

template <typename F, typename Tuple>
decltype(auto) apply(F&& f, Tuple&& t);

Effects: Equivalent to return apply_impl(forward<F>(f), forward<Tuple>(t),
make_index_sequence<tuple_size<decay_t<Tuple>>::value>{});

Delete the example code in [intseq.general] p 2.



