
 Document number: N3643
 Date: 2013-04-16
 Project: Programming Language C++
 Reference: N3485
 Reply to: Alan Talbot
 cpp@alantalbot.com

Range Adaptor for Selecting from Pair or Tuple

I use maps a lot, for a lot of different things, but my most common use case is to implement a
database-like table, with the primary key (ID) as the key type of the map and a record class as
the mapped type. For this use, almost all of my iterator operations involve only the mapped
type of the value pair—the key is used only to look up a record, or occasionally to access the ID
(but my records almost always have to know their own ID). Because of the nature of the map
interface, this means my code usually looks like this (or will, once I have a compiler with range-
based for loops):

for (auto& i : m)

{

 i.second.foo();

 i.second.bar();

}

This is a notational nuisance, but the problem becomes much worse in generic contexts:

template<typename C>

void print(const C& c)

{

 for (const auto& i : c)

 cout << i << endl;

}

I would like to call this with whatever container I happen to be using, but operator<< isn’t
overloaded on pair so it won’t compile for maps. And if I implement operator<< for pairs, I still
want to be able choose whether to print the key/mapped pair or only the key type or mapped
type.

The solution I’m proposing is to create a selector_t wrapper for types that have iterators. This
wrapper replaces the native iterators with ones that dereference a selected member of the
value to which the native iterator refers. It takes an integer or type template argument and
uses it to access the selected member with get. The wrapper works on any container type that
provides a begin and end, and has elements of a type that provides get.

There is also a convenience function select which provides automatic creation of the wrapper
type. (Another possible name would be make_selector.) Since this will be used frequently with
maps, select_key and select_value will also be provided (meaning select<0> and select<1>
respectively).

These tools solve my map problem without making any changes to map, and offer other
advantages. For instance I can iterate over a vector of tuples, selecting only the third value.

N3585

2

With select, my code can look like this:

for (auto& i : select<1>(m))

{

 i.foo();

 i.bar();

}

And I can use my generic print function:

print(select<0>(m)); // Print only the key type.

print(select<1>(m)); // Print only the mapped type.

print(m); // Print the pair (given an operator<<).

Here is the same code using the convenience functions:

print(select_key(m)); // Print only the key type.

print(select_value(m)); // Print only the mapped type.

Selection can also be composed:

map<int, tuple<int, float, string>> m = ...

print(select<string>(select_value(m))); // Print each string in the map.

Proposed Wording

Complete wording will be provided in a revision of this paper.

Acknowledgements

Stephan Lavavej suggested making what was originally a mapped-type adaptor more general.

