
“Static If” Considered

Bjarne Stroustrup, Gabriel Dos Reis, Andrew Sutton

Texas A&M University
Department of Computer Science and Engineering

College Station, Texas 77843

Document number: N3613
Date: 2013-03-16

Study group: Concepts
Reply to: Bjarne Stroustrup <bs@cs.tamu.edu>

Gabriel Dos Reis <gdr@cs.tamu.edu>
Andrew Sutton <asutton@cs.tamu.edu>

1 Introduction
The static if feature recently proposed for C++ [1, 2] is fundamentally flawed,
and its adoption would be a disaster for the language. The feature provides a
single syntax with three distinct semantics, depending on the context of use.
The primary mechanism of these semantics is to avoid parsing in branches not
taken. This will make programs harder to read, understand, maintain, and
debug. It would also impede and possibly prevent the future development of
other language features, such as concepts. Furthermore, the adoption of this
feature would seriously compromise our ability to produce AST- based tools
for C++, and therefore put C++ at a further disadvantage compared to other
modern languages vis a vis tool support. It would make C++ a lower-level
language.

The purpose of this paper is to examine the impact of the static if proposal
on C++ source code. The static if feature is designed to address a small
number of recurring design problems:

• conditionally included statements,

• conditionally defined interfaces, and

• constrained templates.

We recognize the problems that the static if proposals are trying to address
are real, and it would be nice to address them. We suspect that principled,
higher-level solutions to these problems that do not damage analyzability may
be found. Thus, this paper is negative, but we are also working on positive
contributions. In particular, template constraints (aka “concepts lite”) addresses
what we see as the major and most urgent problem targeted by the static if
proposal.

For examples, we rely on the static if proposals [1] and [2].

1



2 Conditional Compilation
Conditional compilation, the selective inclusion of statements in a translation
unit, is a conventional motivating example for static if. Consider a simple
example of introducing some declarations, depending on whether the size of
some type, T.

static if (sizeof(T)==8) {
void fun();
void gun(int);

} else {
void gun();
typedef tx int;

}

The semantics of the program are this: if sizeof(T)==8, the compiler will parse
the statements in the “then” branch by only tokenize and brace-match the dec-
larations in the else branch. Those other declarations would be uninterpreted
by the compiler.

Note that unlike normal if statements, the braces enclosing the condition-
ally compiled statements do not introduce a new scope. Those declarations are
declared into the scope enclosing the static if block. This difference makes
code written using static if harder to read and understand—modulating be-
tween static and non-static ifs in a single block provides ample opportunities
for confution and mistakes.

The effect of this declaration is to conditionally modify the current scope
with a set of new declarations. How can we know, later in the program, which
version of gun we should use, or whether tx is defined or not? Any use of those
declarations would also need to be checked by more static if statements.

static if (sizeof(T)==8)
gun(32);

else
gun();

static if (sizeof(T)==8) {
long n = x;

}
static if (sizeof(T)!=8) {
tx n = x;

}

Thus, the use of static_if for conditional compilation is viral.
The impact of conditional parsing on program analysis tools is substantial.

While the feature may be easily implemented as part of the translation process,
program analysis tools have traditionally struggled with conditional declara-
tions. The inclusion of multiple variants (via, e.g., preprocessor conditions)
and simultaneous repersentation within a single program model is still an open
problem in the source code analysis communities. Adopting static if will make
analysis harder, not easier.

2



Better solutions for configuration and versioning are needed, and if language
support is required, then it must not make analysis more difficult.

Note that we are using static if and static_if more or less interchangebly.
The proposals use both. We think that only static_if is viable: allowing
whitespace between static and if would leave us without a reliable way of
searching for static if in many programming environments. For example:

static

/∗
blah blah blah

∗/

if (sizeof(T)==8) {
gun(32);

else
gun();

}

3 Static If and the Preprocessor
One use of static_if would be as an alternative to tradidional ways of compile-
time source manipulation. However, traditional conditional compilation using
#ifdef and macros will not disappear and it is not obvious how manageable a
mixture new and old would be.

It will not be easy to see if static_if is used in a piece of code. We expect
that some uses would be hidden in macros. We simply cannot imagine the uses
to which a combination of static_if and preprocessor tricks would be put. For
example:

#define SI(c) static_if (c)
// ...
SI(NDBUG)
{

int f();
// ...

}

Yes, that’s silly, but we confidently predict that we will see worse.
We have already heard suggestions of static_for and static_while. Can

static_switch be far behind? C++ would become a low-level, unprincipled
hackers’ favorite playground. In our opinion, if you want compile-time compu-
tation, look to constexpr, which does have a sound and type-safe underlying
model.

If we do not provide a static_for, hackers will simply make one out of
static_if or fake equivalents. For example:

#define nvar(n) \

3



static_if (n>0) { \
int mem##n = n; \
nvar(n-1); \

}

So what if we don’t have recursive macros? We can fake those for any reasonable
n.

4 Constraining Templates
The use of static if in templates is particularly troublesome. Consider an
implementation of uninitialized_fill written using static_if.

template <class It, class T>
void uninitialized_fill(It b, It e, const T& x) {
static if (std::is_same<typename std::iterator_traits<It>::iterator_category,

std::random_access_iterator_tag>::value) {
assert(b <= e);

}

static if (std::has_trivial_copy_constructor<T>::value) {
std::fill(b, e, x);

} else {
// Conservative implementation
for (; b != e; ++b) new(&*b) T(x);

}
}

The semantics of static_if are to tokenize the branch not taken. If the condition
is dependent, as it is in the statements above, then the compiler must not
parse either branch. Both branches are tokenized since either one could contain
compiler-specific extensions—or both, or neither. That wouldn’t be known until
both branches would have been fully lexed.

The actual parsing of these branches is deferred until instantiation. When
the static if condition can be fully evaluated, one branch may be compiled,
the other discarded.

In other words, using static if inside a template would prevent the compiler
from performing even the most rudimentary checks on a template definition. In
this context, static_if not address the urgent need for early (point of use)
checking of template arguments or for significantly improved diagnostics. Su-
perficially, it appears to, but really it would be a major step backwards in C++’s
ability to diagnose program errors.

Consider the real world impact of this design choice. The inability of the
compiler to parse the branches of the compiler means that the library writer will
need to instantiate every branch of the template just to ensure that the syntax
is correct and that no spelling errors have been made. Today, this is done, to a
large extent, by the compiler.

4



Furthermore, the adoption of static if will make it virtually impossible
to introduce more principled language features later. The simple fact that
static if can only tokenize code in template definitions means that any tem-
plate using the feature will only ever be late-checked. It will not possible to
check for typing or semantic errors within the template definition without a
proper AST.

Yet another form of static if is its use to constrain template arguments.
For example, requirements of uninitialized_fill might be written as two con-
strained declarations by writing if as part of the signature.

template<typename I, typename T>
I uninitialized_fill(I first, I last, const T& value)
if (std::is_convertible<T, typename iterator_traits<I>::value_type>::value)

{ ... }

The trailing if clause enforces a requirement that T must be convertible to the
value_type of I. We most strongly agree that some mechanism is needed for
constraining templates, this is particular syntax leaves much to be desired. It
is particularly verbose, and leaves the entire body of the template unchecked.
The body must only be tokenized because the static condition could guard the
instantiation against compiler-specific extensions in the nested code.

The static if feature might also be used to support overloading. Below is
an implementation of advance.

template<typename I>
void advance(I& i, int n)
if (is_input_iterator<I>::value &&

!is_bidirectional_iterator<I>::value)
{ ... }

template<typename I>
void advance(I& i, int n)
if (is_bidirectional_iterator<I>::value &&

!is_random_access_iterator<I>::value)
{ ... }

template<typename I>
void advance(I& i, int n)
if (is_random_access_iterator<I>::value)

{ ... }

Because static if only allows for Boolean decisions, overloading on a set of
overlapping constraints requires the programmer to write bounding predicates
like those above (e.g., input iterator but not bidirectional, bidirectional but
not random access, etc...). This model of overloading is brittle, error-prone,
verbose, and defines a “closed world”. No other overloads may be considered
without modifying the constraints on the existing declarations in order to ensure
consistency.

Declarations might be condensed using else clauses, but this is only cos-
metic.

5



template<typename I>
void advance(I& i, int n)
if (is_input_iterator<I>::value && !is_bidirectional_iterator<I>::value)
{ ... }

else if (is_bidirectional_iterator<I>::value && !is_random_access_iterator<I>::value)
{ ... }

else
{ ... }

The problems inherent in using if as the basis for overloading remain.
We need language mechanisms to support constraints on template argu-

ments, and constraint-based overloading is urgently required. However, static if
is not a good way to achieve those goals. We need language features that enable
the compiler to perform additional checking, and not diminish our capabilities.
We also want language features that lead to more advanced forms of (compiler
and non-compiler) program analysis; static if does not satisfy that require-
ment.

Our suggested alternative, template constraints (a.k.a., concepts-lite), is a
lightweight extension of the C++ programming language that satisfies both of
these requirements. The syntax is similar to what was proposed for concepts
with respect to constraining template arguments (i.e., a requires clause), and
we can reliably support constraint-based overloading while lowering compile-
times compared to current alternatives. The design of concepts-lite is such that
future extensions (i.e., concepts) and external program analyses will be readily
supported. This work is being presented in the WG21 Bristol meeting.

5 In Class Scope
The static if feature is also available inside class scope. A number of possible
applications have been presented. Below is an example of a metafunction for
computing factorials.

template <unsigned long n>
struct factorial {
static if (n <= 1) {
enum : unsigned long { value = 1 };

} else {
enum : unsigned long { value = factorial<n - 1>::value * n };

}
};

This seems like a reasonable idea, but the motivating example simply moves
the complexity from one style of idiomatic programming to another and does
so in a way that requires a new language feature. A better solution would be
to use constexpr functions. A significant negative consequence of that feature
is increased confusion about how to write integer metaprograms.

Another suggested use is the inclusion and ordering of members. static if
might be used, for example, as a means of the avoiding the usual overhead of

6



empty base optimizations.

template<typename T, typename A>
class dynarray
{
T* start_;
T* finish_;
static if (!is_empty<A>::value) {
A alloc_;

}
};

Although may seem like an elegant alternative, the impact on the class’s imple-
mentation is far less so. For example, how would we write a constructor?

template<typename T, typename A>
dynarray<T, A>::dynarray(size_t n, T value, const A& alloc)
: start_(alloc.allocate(n * sizeof(T))
, finish_(start + n)

{
static if (!is_empty<A>::value) {
alloc = alloc_;

}
}

Every access to the allocator member must be guarded by a new static if.
Again, this use of static if is viral.

A viable alternative to the use of static if or more traditional means of
implementing the empty base optimization is to use a tuple. The tuple template
will eliminate all of the overhead of empty classes.

The use of static ifmight also be used to reorder data structures for tighter
alignment, but this is a potentially dangerous idea that could lead to bugs that
are exceptionally difficult to diagnose and fix.

Being a new and relatively simple-to-use new feature, static_if would un-
doubtedly be used by many who have no need for the relatively small incre-
mental improvement in performance offered. The library writers for which such
techniques really are important, already have the tools and skills needed.

6 Conclusions
In this paper we consider the impact and risks of adopting static if. Some
of the problems addressed by the proposed feature are real and urgent, but
on balance this proposal this proposal would do much more harm than good.
Language features addressing these problems must not negatively affect the
language and our ability to build tools around it. We conclude that future
development of static if should be abandoned, and that alternatives such as
“concepts-lite” approach should be pursued instead.

7



References
[1] Brown, W.E., A Preliminary Proposal for a Static if, ISO/IEC

JTC1/SC22/WG21 N3322=12-0012, Jan, 2012

[2] Sutter, H., Bright, W., and Alexandrescu, A., Proposal: static if declaration,
ISO/IEC JTC1/SC22/WG21 N3329=12-0019, Jan, 2012

8


	Introduction
	Conditional Compilation
	Static If and the Preprocessor
	Constraining Templates
	In Class Scope
	Conclusions

