Executors and schedulers, revision 1

Document number: ISO/IEC JTC1 SC22 WG21 N3562

Supersedes: ISO/IEC JTC1 SC22 WG21 N3378=12-0068

Date: 2013-3-15

Authors: Matt Austern, Lawrence Crowl, Chandler Carruth, Niklas Gustafsson,
Chris Mysen, Jeffrey Yasskin

Reply-to: Matt Austern <austern@google.com>

This paper is a proposal for executors, objects that can execute units of work packaged as
function objects, in the form of an abstract base class and several concrete classes that inherit
from it. It is based on components that are heavily used in internal Google and Microsoft code,
with changes to better match the style of the C++ standard.

This proposal discusses the design decisions behind the API and also includes a first draft of
formal wording for the working paper.

l. Motivation

Multithreaded programs often involve discrete (sometimes small) units of work that are executed
asynchronously. This often involves passing work units to some component that manages
execution. In C++11, for example, we already have std: : async, which potentially executes a
function asynchronously and eventually returns its result in a future. (“As if’ by launching a
new thread.)

If there is a regular stream of small work items then we almost certainly don’t want to launch a
new thread for each, and it’s likely that we want at least some control over which thread(s)
execute which items. In Google’s internal code, it has been convenient to represent that control
as multiple executor objects. This allows programs to start executors when necessary, switch
from one executor to another to control execution policy, and use multiple executors to prevent
interference and thread exhaustion.

ll. Overview and design issues

The fundamental basis of the design is the executor class, an abstract base class that takes
closures and runs them, usually asynchronously. There are multiple implementations of that
base class. Some specific design notes:
e Thread pools are a common and obvious implementation of the executor interface,
and this proposal does indeed include thread pools, but other implementations also exist.
e The choice of which executor to use is explicit. This is important for reasons described in
the Motivation section. In particular, consider the common case of an asynchronous
operation that itself spawns asynchronous operations. If both operations ran on the same



executor, and if that executor had a bounded number of worker threads, then we could
get deadlock. Programs often deal with such issues by splitting different kinds of work
between different executors.

e There is a global default executor, of unspecified concrete type, that can be used when
detailed control is unnecessary. There is a mechanism to change the default executor.
Changing the default executor is ugly but it is sometimes useful, especially in tests.

e The interface is based on inheritance and polymorphism, rather than on templates, for
two reasons. First, executors are often passed as function arguments, often to functions
that have no other reason to be templates, so this makes it possible to change executor
type without code restructuring. Second, a non-template design makes it possible to
pass executors across a binary interface: a precompiled library can export a function one
of whose parameters is an executor*. The cost of an additional virtual dispatch is
almost certainly negligible compared to the other operations involved.

e Conceptually, an executor puts closures on a queue and at some point executes them.
The queue is always unbounded, so adding a closure to an executor never blocks.
(Defining “never blocks” formally is challenging, but informally we just mean that add ()
is an ordinary function that executes something and returns, rather than waiting for the
completion of some potentially long running operation in another thread.)

One especially important question is just what a closure is. This proposal has a very simple
answer: std: : function<void () >. One might question this for three reasons.

First, this decision means that there is no direct provision for returning values from a work unit
that's passed to an executor. That is, there is no equivalent of std: : future. A work unitis a
closure that takes no arguments and returns no value. This greatly simplifies the interface. This
is indeed a limitation on user code, but in practice we haven’t found it a terribly serious limitation.
In practice it's often the case that when a work item finishes we’re less interested in returning a
value than in performing some other action. Also, since a closure can package arbitrary
information, users who need to obtain results can provide a std: :packaged task. (Ordo
something similar manually.)

Second, one might wonder why this is a single concrete type, rather than (say) a template
parameter that can be instantiated with an arbitrary function object of no arguments and void
return type. One strong reason for that choice is that it's existing practice. Another is that a
template parameter would complicate the interface without adding any real generality. In the end
an executor class is going to need some kind of type erasure to handle all the different kinds of
function objects with void () signature, and that’s exactly what std: : function already does.
Most fundamentally, of course, executor is an abstract base class and add () is a virtual
member function, and function templates can’t be virtual.

Third, one might worry about performance concerns with std: : function<void () >. Again,
however, any mechanism for storing closures on an executor’s queue will have to use some



form of type erasure. There’s no reason to believe that a custom closure mechanism, written
just for std: :executor and used nowhere else within the standard library, would be better in
that respect than std: : function. (One theoretical advantage of a template-based interface is
that the executor might sometimes decide to execute the work item inline, rather than
enqueueing it for asynchronous, in which case it could avoid the expense of converting it to a
closure. In practice this would be very difficult, however: the executor would somehow have to
know which work items would execute quickly enough for this to be worthwhile.)

Another important questions about executors is their interaction with time: should an executor
just promise to execute closures at some unspecified time, or should there be some
mechanism for users to supply more specific requirements? In practice it has proven useful for
users to be able to say things like “run this closure, but no sooner than 100s from now.” This is
useful for periodic operations in long-running systems, for example. We provide two versions of
this facility: add after, which runs a closure after a specified duration, and add_at, which
runs a closure at (or, more precisely, no sooner than) a specified time point.

There are several important design decisions involving that time-based functionality. First: how
do we handle executors that aren’t able to provide it? The issue is that add_at and add after
involve significant implementation complexity. In Microsoft’'s experience it's important to allow
very simple and lightweight executor classes that don’t need such complicated functionality. We
address this by providing two abstract base classes, executor and scheduled executor,
the latter of which inherits from the former. The time-based functionality is part of the
scheduled_executor interface but not part of executor.

Second, how should we specify time? The libraries that this proposal is based on just use some
integral type to specify time duration (with time measured in milliseconds or microseconds), but
this proposal uses standard durations and time points. This requires some thought since
chrono::duration and chrono::time point are class templates, not classes. Some
standard functionality, like sleep until and sleep for, is templatized to deal with arbitrary
duration and time point specializations. That's not an option for an executor library that
uses virtual functions, however, since virtual member functions can’t be function templates.
There are a number of possible options:

1. Redesign the library to make executor a concept rather than an abstract base class.
We believe that this would be invention rather than existing practice, and that it would
make the library more complicated, and less convenient for users, for little gain.

2. Make executor a class template, parameterized on the clock. As discussed above, we
believe that a template-based design would be less convenient than one based on
inheritance and runtime polymorphism.

3. Pick a single clock and use its duration and time point.

We chose the last of those options, largely for simplicity.

Finally, we need to think about how executors interact with exceptions. If we fail to acquire a



resource in an executor’s constructor (if, for example, thread pool fails to start its threads),
then the obvious way to signal that error is by throwing an exception. A more interesting
question is what happens if a user closure throws an exception. The exception will in general be
thrown by a different thread than the one that added the closure or the thread that started the
executor, and may be far separated from it in time and in code location. The decision we made
is that the program will terminate if any closure passed to an executor throws an exception. We
have several reasons for that decision:

e |t's consistent with the behavior of the internal libraries that this proposal was based on.

e |t's consistent with the way that std: : thread behaves.

e Users who need to propagate information from closures’ exceptions can wrap them and
store them in data structures on the side, just as they can do with any other information
that closures generate.

Most of the use cases where this would matter could be handled by std::future.
Such a facility has the potential to be dangerous or complicated because it would require
aggregating multiple exceptions thrown by closures executing simultaneously.

In general the goal of this proposal was to standardize prior art, without any design innovation. As
a consequence, this proposal mostly involves classes that have been used internally. (With
mechanical changes, of course, such as changing names to match the standard’s styles and
using standard facilities, like std: : function<void () >, instead of internal pre-standard
equivalents.) The classes in this proposal are just a subset of what might be proposed, and the
Future Directions section at the end describes some other executors that might be standardized
in the future.

lll. Proposed wording

This proposal includes two abstract base classes, executor and scheduled executor (the
latter of which inherits from the former); several concrete classes that inherit from executor or
scheduled executor; and several utility functions.

Executors library summary

Subclause Header(s)

[11.1 [executors.base] <executor>

I11.2 [executors.classes]
[11.2.1 [executors.classes.loop] <loop executor>
[11.2.2 [executors.classes.serial] <serial executor>
I11.2.3 [executors.classes.thread_pool] <thread pool>




lll.1 Executor base classes [executors.base]

The <executor> header defines abstract base classes for executors, as well as non-member
functions that operate at the level of those abstract base classes.

Header <executor> synopsis
class executor;

class scheduled executor;

static scheduled executor* default executor();

static void set_default executor(scheduled executor* executor);

executor* singleton_inline_executor();

1ll.1.1 Class executor [executors.base.executor]

Class executor is an abstract base class defining an abstract interface of objects that are
capable of scheduling and coordinating work submitted by clients. Work units submitted to an
executor may be executed in one or more separate threads.

The initiation of a work unit is not necessarily ordered with respect to other initiations. [Note:
Concrete executors may, and often do, provide stronger initiation order guarantees. Users may,
for example, obtain FIFO guarantees by using the serial executor wrapper.] There is no
defined ordering of the execution or completion of closures added to the executor. [Note: The
consequence is that closures should not wait on other closures executed by that executor.
Mutual exclusion for critical sections is fine, but it can’t be used for signalling between closures.
Concrete executors may provide stronger execution order guarantees.]

class executor {
public:
virtual ~executor();
virtual void add(function<void()> closure) = 0;

virtual size t num_pending closures() const = 0;

s

executor: :~executor()

Effects: Destroys the executor.

Synchronization: All closure initiations happen before the completion of the executor



destructor. [Note: As a consequence, all closures that will ever execute will have
completed before the completion of the executor destructor, and programmers can
protect against data races with the destruction of the environment. Whether or not a
concrete executor initiates all closures is defined by the semantics defined by that
concrete executor.]

void executor::add(std::function<void> closure);

Effects: The specified function object shall be scheduled for execution by the executor at
some point in the future.

Synchronization: completion of closure on a particular thread happens before
destruction of that thread’s thread-duration variables. [Note: The consequence is that
closures may use thread-duration variables, but in general such use is risky. In general
executors don’t make guarantees about which thread an individual closure executes in.]

Error conditions: If invoking c1osure throws an exception, the executor shall call
terminate.

size_t executor::num_pending_closures() ;

Returns: the number of function objects waiting to be executed. [Note: this is intended for
logging/debugging and for coarse load balancing decisions. Other uses are inherently
risky because other threads may be executing or adding closures.]

ll.1.2 Class scheduled _executor [executors.base.scheduled_executor]

Class scheduled executor is an abstract base class that extends the executor interface by
allowing clients to pass in work items that will be executed some time in the future.
class scheduled_executor : public executor {

public:
virtual void add_at(chrono::system_clock::time_point abs_time,
function<void()> closure) = 0;
virtual void add_after(chrono::system_clock: :duration rel_time,

function<void()> closure) = 0;

}s

void add_at(chrono::system_clock::time_point abs_time,
function<void()> closure);

Effects: The specified function object shall be scheduled for execution by the executor at
some point in the future no sooner than the time represented by abs_time.

Synchronization: completion of closure on a particular thread happens before



destruction of that thread’s thread-duration variables.

Error conditions: If invoking closure throws an exception, the executor shall call
terminate.

void add_after(chrono::system_clock::duration rel_time,
function<void()> closure);

Effects: The specified function object shall be scheduled for execution by the executor at
some point in the future no sooner than time rel_time from now.

Synchronization: completion of closure on a particular thread happens before
destruction of that thread’s thread-duration variables.

Error conditions: If invoking closure throws an exception, the executor shall call
terminate.

1ll.1.3 Executor utility functions [executors.base.utility]

scheduled_executor* default_executor();

Returns: a non-null pointer to the default executor defined by the active process. If
set _default executor hasn’t been called then the return value is a pointer to an
executor of unspecified type. [Note: implementations are encouraged to ensure that
separate tasks added to the initial default executor can wait on each other without
deadlocks.]

void set_default_executor(scheduled_executor* executor);

Effect: the default executor of the active process is set to the given executor instance.
Requires: executor shall not be null.
Synchronization: Changing and using the default executor is sequentially consistent.

executor* singleton_inline_executor();

Returns: a non-null pointer to an executor that immediately executes any closure that is
added to it using add () . Multiple invocations return a pointer to the same object.

lll.2 Concrete executor classes [executors.classes]

This section defines executor classes that encapsulate a variety of closure-execution policies.

1ll.2.1 Class loop_executor [executors.classes.loop]

Header <loop_executor> synopsis
class loop executor;



Class loop_executor is a single-threaded executor that executes closures by taking control of a
host thread. Closures are executed via one of three closure-executing methods: 1oop (),
run_queued closures (), and try run one closure (). Closures are executed in FIFO
order. Closure-executing methods may not be called concurrently with each other, but may be
called concurrently with other member functions.

class loop_executor : public executor {
public:

loop_executor();

virtual ~loop_executor();

void loop();

void run_queued_closures();

bool try run_one_closure();

void make_loop_exit();

// [executor methods omitted]

}s

loop_executor: :loop_executor()

Effects: Creates a loop_executor object. Does not spawn any threads.

loop_executor: :~loop_executor()

Effects: Destroys the 1oop executor object. Any closures that haven’t been executed
by a closure-executing method when the destructor runs will never be executed.
Synchronization: Must not be called concurrently with any of the closure-executing
methods.

void loop_executor::loop()

Effects: Runs closures on the current thread until make loop exit () is called.
Requires: No closure-executing method is currently running.

void loop_executor::run_queued_closures()

Effects: Runs closures that were already queued for execution when this function was
called, returning either when all of them have been executed or when

make loop exit () is called. Does not execute any additional closures that have
been added after this function is called. Invoking make loop exit () from within a
closure run by run_queued_closures() does not affect the behavior of subsequent
closure-executing methods. [Note: this requirement disallows an implementation like
void run gqueued closures() { add([] () {make loop exit();});



loop(); } because that would cause early exit from a subsequent invocation of
loop () ]

Requires: No closure-executing method is currently running.

Remarks: This function is primarily intended for testing.

bool loop_executor::try_run_one_closure()

Effects: If at least one closure is queued, this method executes the next closure and
returns.

Returns: true if a closure was run, otherwise false.

Requires: No closure-executing method is currently running.

Remarks: This function is primarily intended for testing.

void loop_executor::make_loop_exit()

Effects: Causes loop () or run_queued closures () to finish executing closures
and return as soon as the current closure has finished. There is no effect if 1oop () or
run queued closures () isn’t currently executing. [Note: make loop exit () is
typically called from a closure. After a closure-executing method has returned, it is legal
to call another closure-executing function.]

1ll.2.2 Class serial_executor [executors.classes.serial]

Header <serial executor> synopsis
class serial_executor;

Class serial executor is an adaptor that runs its closures on a particular thread by
scheduling its closures on another (not necessarily single-threaded) executor. It runs added
closures in FIFO order inside a series of closures added to an underlying executor. Earlier
serial executor closures happen before later closures. The number of add () calls on the
underlying executor is unspecified, and if the underlying executor guarantees an ordering on its
closures, that ordering won't necessarily extend to closures added through a

serial executor. [Note: this is because serial executor can batch add() calls to the
underlying executor.]

class serial_executor : public executor {

public
explicit serial_executor(executor* underlying executor);
virtual ~serial_executor();

executor* underlying executor();

// [executor methods omitted]



s

serial_executor::serial_executor(executor* underlying_executor)

Requires: underlying executor shall not be null.

Effects: Creates a serial executor that executes closures in FIFO order by passing
them to underlying executor. [Note: several serial_executor objects may share a
single underlying executor.]

serial_executor::~serial_executor()

Effects: Finishes running any currently executing closure, then destroys all remaining
closures and returns. If a serial executor is destroyed inside a closure running on
that serial executor object, the behavior is undefined. [Note: one possible behavior
is deadlock.]

executor* serial_executor: :underlying_executor()

Returns: The underlying executor that was passed to the constructor.

1ll.2.3 Class thread_pool [executors.classes.thread_pool]

Header <thread_pool> synopsis
class thread_pool;

Class thread pool is a simple thread pool class that creates a fixed number of threads in its
constructor and that multiplexes closures onto them.

class thread_pool : public scheduled executor {
public:
explicit thread pool(int num_threads);

~thread_pool();

// [executor methods omitted]

s

thread_pool::thread_pool(int num_threads)

Effects: Creates an executor that runs closures on num_threads threads.
Throws: system_error if the threads can’t be created and started.

thread_pool: :~thread_pool()
Effects: Waits for closures (if any) to complete, then joins and destroys the threads.



V. Future directions and related work

There are many other useful thread pool classes, in addition to those in this proposal. Several of
them are in use within Google and Microsoft. In particular, some of the standard policy choices
are:
e Creating a fixed number of threads when it's constructed and multiplexing closures on
top of them. This thread pool risks deadlock if its closures wait on each other to finish.
e Starting a new thread whenever no existing thread is available to run a new closure. This
risks memory exhaustion if it's presented with a burst of work.
Allowing the number of threads to vary within a user-specified range.
Using more advanced techniques, with the goal of running the minimum number of
threads necessary to keep the system's processors busy. (One such technique is a
two-level design, where a “thread manager’ maintains a global variable-sized collection
of threads and a set of “managed queues” implement the executor interface and feeds
closures into the thread manager.)
This proposal only includes the first type of policy. Future proposals may include others,
especially the last.

The Google executor library provides many options for starting threads, including thread names,
priorities, and user-configurable stack sizes. Those options have proven useful, but they rely on
functionality that the underlying std: : thread class does not provide. We may submit a future
proposal that includes extensions to std: : thread.

Sometimes it’s useful to add a closure to an executor and then later remove it, before it has
executed. For example, this sometimes helps with clean shutdown. The internal Google and
Microsoft executor libraries both have cancellation mechanisms. We omitted those mechanisms
from this proposal because they’re complicated, but we could add them to a future version if
there is sufficient interest.

There is an obvious extension to executors and/or to std: : async: something that provides
essentially the semantics of async, but that also allows the user to explicitly specify which
executor will be used for execution. Possibilities include an async member function, an
overload of std: : async that takes an executor in place of the policy, or a launch policy that
explicitly uses the default executor. This is being proposed separately, in N3558.

Executor implementations differ in the order they call closures (FIFO, priority, or something

else), whether they provide a happens-before relation between one closure finishing and the next
closure starting, whether it's safe for one closure on a given executor to block on completion of
another closure it added to the same executor, and other properties. Users sometimes want to
write functions that accept only executors satisfying the properties they rely on. A future paper
may invent an appropriate mechanism for such queries and constraints.



This proposal takes a simple approach to executor shutdown, generally just dropping closures
that haven't started yet. Java's Executor library, on the other hand, provides a flexible
mechanism for users to shut down executors with control over how closures complete after
shutdown has started. C++ should consider what's appropriate in this area.

VII. Changes since the previous version
Differences between this document (R1) and ISO/IEC JTC1 SC22 WG21 N3378=12-0068 (RO):

RO was entirely a Google proposal, based on Google’s internal executor and thread pool
classes. R1 is a joint Google/Microsoft proposal and includes elements of Google’s
executor and Microsoft’'s scheduler.

In response to feedback in and after the Portland meeting, R1 eliminates the notion of
executors with finite queue length. We now document add () as non-blocking in all
circumstances; try add () has been removed. Finite-sized queues are occasionally
useful, but they add complexity and they don’t need to be part of the base interface; it's
always possible for users to implement wrappers with finite queues.

RO included a thread manager class, with various associated helper classes. R1
removes it. It's being removed simply to narrow the scope of this proposal and reduce
the amount of work we have to do. Executors are useful even without

thread manager, and thread manager can be added later as a separate proposal.
In RO, add_at and add_after were part of the executor abstract base class. In this
revision they have been moved to a new scheduled executor abstract base class,
which inherits from executor.

In RO, default executor management was via static member functions of class executor.
In R1 they have been changed to non-member functions. (Largely because that's more
natural in light of the executor/scheduled executor split.)

The non-member functions new _inline executor and

new synchronized inline executor that were presentin RO have been removed
from R1. There are use cases for those functions, but
singleton inline executor, possibly in conjunction with a serial executor
wrapper, is almost always good enough.

The design discussions in RO were in several different sections. As of version R1 they
have now been consolidated.

RO’s “proposed interface” section is now a “proposed wording” section.

RO’s “synchronization” section has been removed. The guarantees in it have been
moved to the proposed wording section.



