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Abstract 
This proposal describes a new language feature that enables the program to view any object of a (non-

union) class type as a tuple (std::tuple), where each tuple element corresponds to the object‘s 

respective non-static data member. This enables class authors and library writers to express that some 

operation must be applied to all object‘s members (or base sub-objects), without the necessity to name 

each member explicitly. 

Unlike a general-purpose compile-time reflection mechanism as proposed in N1471
[1]

, this proposal 

addresses only one aspect of reflection (listing class‘s data members) by adding a fairly small section 

to the Standard Library (which requires certain ‗compiler magic‘).  

Motivation 
Typically, when a programmer creates a regular type she has to repeat a lot of redundant code when 

specifying comparison operations: 

 struct Reg { 
  int a; 

  Rational b; 

  std::string c; 
 }; 

 
 bool operator==( Reg lhs, Reg rhs ) { 
  return lhs.a == rhs.a  
   && lhs.b == rhs.b  
   && lhs.c == rhs.c; 
 } 

 
 bool operator<( Reg lhs, Reg rhs ) { 
  if( lhs.a < rhs.a ) return true; 
  if( lhs.a > rhs.a ) return false; 
  if( lhs.b < rhs.b ) return true; 
  if( lhs.b > rhs.b ) return false; 
  if( lhs.c < rhs.c ) return true; 
  if( lhs.c > rhs.c ) return false; 
  return false; 
 } 

There is an obvious pattern in those implementations, but there is currently no way in C++ to automate 

this definition. While it is possible to extend the current ―defaulted implementation‖ syntax to work 

also for comparison operators: 

bool operator==(Reg lhs, Reg rhs) = default; 
bool operator< (Reg lhs, Reg rhs) = default; 
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The ability to specify that we want to perform some operation ―for each member sub-object‖ (or ―for 

each base sub-object‖) goes beyond comparison operators. For instance, it enables libraries to 

automatically stream out user defined types, automatically archive or marshal objects.  

Additionally, some libraries require an indexed access to object‘s members without the necessity to do 

something ―for all members‖. For instance Boost.Spirit
[2]

 library requires that for a given parser, say 

(int_ << double_ << char_), it is given a corresponding attribute (object) whose first (at index 

0) subobject is of type int, second of type double, third of type char. The following class: 

struct S { 
 int i; 
 double d; 
 char c; 
}; 

does meet the requirement, but there is no way for the library to know it, unless the user provides an 

explicit mapping herself, but in that case, she has to repeat something that is already obvious. 

Current workaround for Boost users is to use macro BOOST_FUSION_ADAPT_STRUCT and similar: 

 namespace demo { 

  struct employee { 

   std::string name; 

   int age; 

  }; 

 } 

 

BOOST_FUSION_ADAPT_STRUCT( 

  demo::employee, 

  (std::string, name) 

  (int, age) 

 ) 

 // demo::employee is now a Fusion sequence 

This solution also enables the automatic implementation of comparison operators for structs. However, 

it has limitations. We still need to list all members twice. This is better than listing them n times, but is 

still redundant and error prone. For instance, if we add a third member to struct employee, no-one 

will remind us that we should have also added it also to the adapting macro. Second, it only works for 

members with public access; thus we are still unable to implement an assignment operator, which 

needs to be a member function, and assign also to private members. 

Another goal of the proposed introspection library is to ensure that no member access is violated. That 

is, if someone does not have access to member m of our class, he shouldn‘t also be able to access the 

member via the tuple interface. 

Description 
With the functionality proposed here, the following syntax is possible: 

 struct Rec { 
  int a; 

  Rational b; 

  std::string c; 
 }; 

 
 Rec r{1, {3, 7}, "dog"}; 
 auto tup = std::meta::members(r).value; 

http://www.boost.org/doc/libs/1_48_0/libs/spirit/doc/html/index.html


Now, tuple tup is a view of object r. The type of tup is std::tuple<int&, Rational&, 

std::string&>. It is somewhat similar to writing: 

 auto tup = std::tie(r.a, r.b, r.c); 

The important difference is that you do not have to list all Rec‘s members one by one. If you add a 

new member data to struct Rec, the former notation will automatically include it. It is more suitable in 

generic code, where you do not know the members of the class you are using. 

If r was declared const, the type of the tup would have been std::tuple<int const&, 

Rational const&, std::string const&>. The first element of tup is a reference to 

r.a, the second element is a reference to r.b. Assigning to std::get<0>(tup) is equivalent to 

assigning to r.a directly; assigning new value to std::get<1>(tup) changes the value of 

r.b: 

 std::get<0>(tup) = 99; 

 assert( r.a == 99 ); 

LessThan comparison for type Rec can be now implemented as follows: 

 bool operator<( Rec const& l, Rec const& r ) { 
  return std::meta::members(l).value < std::meta::members(r).value; 
 } 

This compares two tuples that represent objects l and r. It takes advantage of tuple‘s operator<, 

which is defined according to most programmers‘ intuition. Again, it is similar to: 

 bool operator<( Rec const& l, Rec const& r ) { 

  return std::tie(l.a, l.b, l.c) < std::tie(r.a, r.b, r.c); 

 } 

But it doesn‘t require of the programmer to list, or even be aware of, all Rec‘s members. 

How does this work? Similarly to how type traits work. When a ‗meta‘ expression (like 

std::meta::members(l).value) appears in the code, compiler specializes function template 

meta as well as the type this function returns. Continuing the above example with operator<, 

compiler generates a specialization for Rec&: 

 namespace std{  

 namespace meta{ 

 

  template<>  

  auto members<Rec&>(Rec& obj) -> MEMBERS_T<Rec&> 

  { 

   return MEMBERS_T<Rec&>(obj); 

  } 

 

  template<> 

  class MEMBERS_T<Rec&> 

  { 

   friend auto members<Rec&>( Rec& obj ) -> MEMBERS_T<Rec&>; 

   MEMBERS_T(Rec& obj) : value{obj.a, obj.b, obj.c} {} 

   

  public: 

   std::tuple<int&, Rational&, std::string&> value; 

  }; 

 

 }} // namespace std::meta 



When compiling the definition of operator<, compiler is allowed not to create and copy tuples, and 

simply perform member-wise comparison, because expression std::meta::members(l).value is 

a compiler intrinsic. meta is a special namespace in namespace std. It is special because every class 

or struct defined in the program or in the library implicitly declares classes and functions defined in 

meta as its friends. Thus, classes and functions from namespace meta have access to every member 

in every class/struct regardless if these members are declared with public, protected or private access. 

This does not violate encapsulation, though, because classes and functions from meta do not 

themselves read or write those members. They only provide back the access to the objects via the tuple 

member object value, in a manner that guarantees the preservation of encapsulation, as described 

below. members is a function template specialization. Compiler specializes this template for every 

class/struct R in a number of variants: for R&, R const&, R volatile& and R volatile 

const&, R&&, R const&&, R volatile&& and R volatile const&& (although we do not 

expect the last three to be used in practise). This function specialization returns an object of 

unspecified non-union class type (but different for each instantiation of members) (we refer to it as 

MEMBERS_T<S>, where S is R&, R&&, R const&, ...), which contains our data member value. 

value in the type MEMBERS_T<S> for different types R may be declared either  private or public, 

based on the following rules. If all members in R are public, value is declared public, otherwise 

value is declared private, but in exchange class MEMBERS_T<S> declares as a friend class R and 

everyone else that R also declares as friend. Thus, whoever has direct access to all data members of R, 

has also access to R when viewed as tuple; and (although this is a bit more restrictive) if someone does 

not have access to at least one data member of R, he also does not have access to any member of R 

when viewed as a tuple. The following example illustrates that. 

 class Name { 

 public: 

  std::string first; 

  std::string second; 

  void process(); 

 

 private 

  friend class IdManager; 

  Id id; 

 }; 

 

 Name gname; 

 std::meta::members(gname).value;  // Error: value is private 
 

 void Name::process() { 

  std::meta::members(gname).value; // OK: value is private but Name is a friend of   
 }    // type MEMBERS_T<Name&> 
  

 void IdManager::inspect() { 

  std::meta::members(gname).value; // OK: value is private but IdManager is a  
 }    // friend of type MEMBERS_T<Name&> 

Note that the three above expressions std::meta::members(gname) return prvalues of the 

very same type MEMBERS_T<Name&>. The fact that the full expression is invalid in the first case and 

valid in the latter two is a consequence of ordinary C++ rules: private-vs-public member access and 

friendship. To illustrate it better, let‘s see how compiler magic works when the definition of class 

Name as described above is parsed. Compiler will modify the definition slightly and provide one or 

more specializations: 



 class Name { 

 public: 

  std::string first; 

  std::string second; 

  void process(); 

 

 private 

  friend class IdManager; 

  Id id; 

 

  [[MAGIC]] template<class T>  

   friend class std::meta::MEMBERS_T; 

 

  [[MAGIC]] template<class T>  

   friend auto std::meta::members(T&&) -> std::meta::MEMBERS_T<T&&>;  

 }; 

 

 namespace std{ namespace meta{ 

 

  [[MAGIC]]  

  template<> class std::meta::MEMBERS_T<Name&>  

  { 

  private: // everything private 
   std::tuple<std::string&, std::string&, Id&> value; 

   MEMBERS_T( Name& obj ) : value{ obj.first, opj.second, obj.id } {} 

             

   [[MAGIC]] friend class ::Name; 

   [[MAGIC]] friend class ::IdManager; 

   [[MAGIC]] friend auto members<Name&>(Name&) -> MEMBERS_T<Name&>; 

  } 

   

 }} // std::meta 

In other words, we propose the notation that requires accessing (private or public) member value 

(and class MEMBERS_T<T> declaring friendship to T and T‘s friends) to allow the abovementioned 

―context sensitivity‖. And owing to this context sensitivity, friends of T can use the proposed 

reflection mechanism to access T‘s private data members. 

This feature blends the language with the library, similarly to typeinfo, initializer_list, 

―for each‖ loop and type_traits. The entire expression std::meta::members(e).value 

should be thought of as a sort of keyword (say, membersof(e)). That is, we do not want to 

encourage any other usages, like  

 return std::meta::members(e); // No reason to do that 

Therefore this proposal does not require meeting any requirements like CopyConstructible on 

‗intermediate‘ types (MEMBERS_T<T>) other than MoveConstructible, which is necessary to 

allow the proposed function call syntax. The expression is rather verbose: you spell it 

std::meta::members(e).value but one could expect a shorter std::members(e). This is 

because we believe it will be easier for the programmers to understand the friendship (access) 

relationships that are hidden inside the feature. We need namespace meta, because it is its class 

templates that all other classes implicitly declare friendship to. We need member value, because it is 

this member that will be declared private or public: it will be easy to generate error message 

―Expression is invalid because value is declared private‖.  

The following examples demonstrate the mechanics of the proposal.  
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 class CC { 
  int i,  

  std::string s; 

 

 public: 
  CC& operator=( CC const& rhs ); 

  CC& operator=( CC && rhs ); 
 }; 
 CC c; 
 

 auto tup = std::meta::members(c).value; // error: value is private 
 

 CC& CC::operator=( CC const& rhs ) { 
  std::meta::members(*this).value = std::meta::members(rhs).value;  

  // ok: meta::MEMBERS_T<CC const&> declares CC as friend    
  return *this; 
 }; 

 

 CC& CC::operator=( CC && rhs ) { 
  meta::members(*this).value = meta::members(std::move(rhs)).value;  
  return *this; 
 }; 

In the above example, we implement the assignment of CC in terms of tuple assignment. Even though 

in both cases the expression on the left-hand side of the assignment is a prvalue, tuple assignment is an 

overloaded function call, which is valid in this context. It is not possible to use this meta-programming 

feature to initialize members in the constructor. 

Note that tuples created this way always contain references: no objects. They are not copies of objects, 

but views. 

Operations like assignment or comparison involve not only member objects but also base classes. For 

these purposes, we provide a couple of other functions in namespace meta: bases, 

bases_and_members, recursive_members and bases_with_virtuals. Given the following 

struct I: 

 struct G { int mg; }; 
 struct H { int mh; }; 
 struct I : G, H { int mi, mj; }; 

We can define equality comparison in the following ways: 

 bool operator==( I l, I r ) { 
  return std::meta::bases(l).value == std::meta::bases(r).value 
   && std::meta::members(l).value == std::meta::members(r).value; 
 } 

or, for short, because it is a common pattern: 

 bool operator==( I l, I r ) { 
  return std::meta::bases_and_members(l).value  
   == std::meta::bases_and_members(r).value;  
 } 

The above solution calls operator== first for all I‘s base classes, in order in which they are 

declared, and then for each member. It requires that classes G and H have equality operator already 

defined. If they do not, our proposal comes with another alternative:  

 bool operator==( I l, I r ) { 



  return std::meta::recursive_members(l).value  
   == std::meta::recursive_members(r).value;  
 } 

function recursive_members creates a tuple that recursively extracts members from subclasses, so 

in our case std::meta::recursive_members(l).value  renders a tuple containing references 

respectively to i.mg, i.mh, i.mi, i.mj. Function meta::recursive_members is expected to 

be used in situations where one wants to use inheritance to make one‘s classes‘ structure more clear: 

 struct Name { 
  string first_name; 
  string family_name; 
 }; 

 
 struct Employee : Name { 
  decimal salary; 
 } 

but at the same time, when streaming, or when giving a sequential access, they want member objects 

from this class and a sub-class to be treated ―equally‖ or ―flatly‖. That is, if you want to treat struct 

Employee as a two element tuple, containing types Name and decimal, you need to use 

meta::bases_and_members; if you want to treat it as a three element tuple, containing two 

strings and a decimal, you need to use std::recursive_members. 

Next example shows how we can ‗automatically‘ implement streaming operation for our type. We 

need a generic function apply that would represent a compile-time recursion equivalent of for-each 

loop. It could be defined as follows. 

 template< typename Fun, int I, typename ... Args > 
 struct ApplyImpl { 
  static void Run( Fun f, tuple<Args...> const& tup ) { 
   f( get<(sizeof...(Args) - I)>(tup) ); 
   ApplyImpl<Fun, I - 1, Args...>::Run( f, tup ); 
  } 
 }; 

 
 template< typename Fun, typename ... Args > 
 struct ApplyImpl<Fun, 0, Args...> { 
  static void Run( Fun f, tuple<Args...> const& tup ) { 

   ; // just to stop recursion 
  } 
 }; 

 
 template< typename Fun, typename ... Args > 
 void apply( Fun f, tuple<Args...> const& tup ) { 
  ApplyImpl<Fun, sizeof...(Args), Args...>::Run( f, tup ); 
 } 

Thus defined function apply calls a generic functor for each tuple element starting from index 0 up 

to the number of tuple elements minus one. An example of such a generic functor for streaming out 

different types could look as follows. 

 struct StreamOut { 
  std::ostream & out_; 
  StreamOut( std::ostream & out ) : out_(out) {} 

 
  template< typename T > 



  void operator()( T const& v ) const { 
   out_ << v << " "; 
  } 
 }; 

Now, the streaming operator can be implemented as: 

 std::ostream & operator<<( std::ostream & out, CC c ) { 
  apply( StreamOut{out}, meta::bases_and_members(c).value ); 
  return out; 
 }  

In other words, the five functions from namespace meta provide a tuple interface for each user 

defined class or struct in a way that preserves encapsulation on one hand and on the other allows 

access to private members to those that are granted it already. Thus, any algorithm on tuples can be 

applied to any object of any (non-union) class type. 

All ‗meta‘ functions can be safely called in noexcept functions and in constant expressions: 

 struct Complex { 

  double x, y; 

  constexpr Complex( double x, double y ) noexcept : x{x}, y{y} {} 

 }; 

 

 constexpr bool operator==( Complex a, Complex b ) noexcept { 

  static_assert( noexcept(std::meta::members(a).value), "" ); 

  return std::meta::members(a).value == std::meta::members(b).value; 

 } 

Details 

Transformations of references 

‗Meta‘ expressions like std::meta::members(e).value  return instances of std::tuple 

that contain only references. These reference types are deduced in the following way. For member 

sub-object m of object o it is decltype((o.m)). For base sub-object of type S of object o, it is S 

with the same reference and CV qualifiers as decltype((o)). This gives the same access (in terms 

of being const, volatile or rvalue-vs-lvalue) to subobjects as though they were accessed by names. 

 struct Person { 

  const std::string name; 

  int phone; 

  int & reference; 

  // ... 

 }; 

  

 int global_ref = 0; 

  

 Person p { "John", 123456, global_ref }; 

 auto pi = std::meta::members(p).value; 

 get<0>(pi) = "Jane"; // error: cannot assign to const std::string 

 get<1>(pi) = 999999; // ok 

 get<2>(pi) = 999999; // ok 
 

 const Person cp { "Jack", 4567890, global_ref }; 

 auto cpi = std::meta::members(cp).value; 

 get<0>(cpi) = "Jane"; // error 



 get<1>(cpi) = 999999; // error 

 get<2>(cpi) = 999999; // ok: const-ness does not apply to member references 

Limitations 

The solution has limitations in case of protected sub-objects. That is, derived classes that have normal 

(by member name) access to base class‘s sub-objects do not have indexed access (using std::meta) 

to those members. We did not find any practical use case for protected member access. The use cases 

we want to address is for anyone to access a POD class, or for a class to access its own (private, 

protected or public) members. 

Another limitation is that in case a type T has some non-static data members declared as private and 

some as public, the access via a tuple is private for all members, although a ‗public‘ subset of those 

could be provided to everyone.  

Virtual inheritance 

Functions from namespace meta provide limited functionality for classes that inherit virtually, or 

inherit from classes that inherit virtually. This is because in those cases the unusual order of subobjects 

might render results surprising to the programmer. Consider the following example: 

struct Name{ 

 std::string first; 

 std::string last; 

}; 

 

template< typename Base2 > 

struct Record : Name, Base2  

{ 

 std::string getFirstName() const { 

  return get<0>(meta::recursive_members(*this).value); 

 } 

}; 

It is not uncommon to expect that base subobject of type Name, along with its members, will be 

ordered in memory before any members of the subobject of type Base2. But in case Base2 inherits 

virtually, some other objects may come first. We are not even able to check that inside the template. If 

this other object that is stored as first happens to be of type std::string the compiler is not even 

allowed to report this as an error. 

Similarly, in case of function meta::bases, a programmer might incorrectly assume that the two 

bases are disjoint and cause an operation that is supposed to be called only once for each base to be in 

fact called twice: 

struct B { /*...*/ }; 

 

struct D1 : virtual B { /*...*/ }; 

 

struct D2 : virtual B { /*...*/ }; 

 

struct init_once // a generic functor 
{  

 template< typename T > 

 void operator()( T& res ) const { 

  res.initialize_once(); 



  apply( *this, std::meta::bases(res).value ); 

   // apply() as defined in one of the previous examples 
 } 

}; 

 

template< typename Base1, typename Base2 > 

struct Resource: Base1, Base2  

{ 

 void init() { 

  init_once{}(*this);  

 } 

 // ... 

}; 

In this case we want to initialize recursively each base subobject (only once). The algorithm will work 

fine as long as neither Base1 nor Base2 inherit virtually (directly or indirectly). But if they do, as in 

the example, B is initialized twice. 

Not every virtual inheritance is bad, though. The notable exception is when virtual inheritance is used 

to indicate ―implementation of the interface‖ in OO sense, and the class that we inherit virtually from 

is an ―interface‖: it has no non-static member sub-objects, and some other constraints (like, has only 

public and protected member functions - but this is beyond our interest). We define a term thin class, 

which indicates a class with no non-static member sub-objects, except for zero-length anonymous bit-

fields, whose base classes (if any) (derived virtually or not) are thin classes. While name ―empty‖ 

appears more suitable it would collide with std::is_empty trait which has a slightly different 

meaning. Next term we define is straight-member-order class: it is a class whose all sub-classes (if 

any) are either (inherited virtually or not) thin classes or inherited non-virtually straight-member-order 

classes. This means that straight-member-order class does not have virtual bases (directly or 

indirectly), or it has virtual bases that are (almost) empty. Function meta::recursive_members is 

only specialized for straight-member-order class; for others a compile-time error is triggered. This 

solution prevents using virtual inheritance in general, but allows particular cases like the following: 

 struct Iface { // an OO interface 
  virtual void fun() = 0; 
  virtual ~Iface(){} 

  Iface(Iface const&) = delete; 

  void operator=(Iface) = delete; 

 }; 

 
 struct G : virtual Iface { 
  void fun() override; 
  int mg; 
 }; 

 
 struct H : G, virtual Iface { 
  void fun() override; 
  int mh; 
 }; 

 
 G g; 

 meta::recursive_members(g)::value; // contains {mg, mh} 

In order to avoid unexpected problems with classes that inherit virtually (directly or indirectly) on the 

one hand, and on the other give the possibility in rare cases to obtain the list of all classes that we 

derive from, we propose the following solution. Functions meta::bases_and_members and 

meta::bases do not compile if applied to objects not of straight-member-order class. In exchange, 



there is a fifth function: meta::bases_and_virtuals that lists all direct bases for every class 

w/o constraints. There is no counterpart for meta::bases_and_members because the same effect 

can be obtained by concatenating the result of meta::bases_and_virtuals and 

meta::members. Thus we have a simple syntax for typical task, and a more verbose, but working, 

syntax for an unusual task; and we force the user to specify explicitly that he is aware of potential 

virtual inheritance surprises. 

Bit-fields 

Since it is not possible to bind a reference to a bit-field, the described functionality is not capable of 

handling bit-fields. When an attempt is made to use classes that contain bit-fields, we choose to 

explicitly signal an error at compilation time rather than silently skip the bit-field members. The only 

exception is made for zero-length anonymous bit-fields because they do not store any data that could 

be silently dropped. In this case such a zero-length bit-field is not treated as a ‗member‘ when used 

with the ‗meta‘ functionality.  

Possible extensions 
While we do not propose it, it is possible to extend the proposal so that any function, function 

template, class or class template defined in namespace std::meta automatically obtains access to 

every private or protected member of any class/struct. This would address the common problem of 

‗meta‘ libraries like Boost.Serialization
[3]

 or ODB,
[4]

 which require that if the programmer wants her 

type to participate in the framework effectively, she needs to put a friendship declaration in her class 

that would allow access to the framework. Quoting Boost.Serialization tutorial: 

 class gps_position 

 { 

 private: 

  friend class boost::serialization::access; 

  int degrees; 

     int minutes; 

     float seconds; 

  // [...] 

 }; 

In contrast, if the ‗meta‘ frameworks could just declare a function template in namespace 

std::meta (in this case language should allow extending the namespace by anyone) users of the 

frameworks wouldn‘t be forced to specify this additional friendship. This would violate the 

encapsulation of class types to some degree, however it would follow the rule that C++ saves 

programmers from inadvertent errors: not from malicious intentions. 

Also, one could expect more of a compile-time introspection library. For instance instead of a tuple of 

references to members one could expect a tuple of pairs: member name and a reference to member. 

This way we would also be able to query the member name as string at compile time. Similarly, one 

could expect to be able to query any object of class type for its every member function that matches a 

given signature: 

struct CalculatorSuite : Suite 

{ 

 void TestCreation(); 

 void TestDestruction(); 

 void TestAssignment(); 

 // ... 
} mySuite; 

http://www.boost.org/doc/libs/1_48_0/libs/serialization/doc/index.html
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// later: 
using Test = std::function<void()>; 

std::vector<Test> tests = std::meta::functions<void()>(mySuite).value; 

for( auto & test : tests ) test(); 

This would be helpful in simplifying the generation of unit test frameworks. 

One could also expect more member access functions like public_members which would provide 

access only to a subset of members of a given class. 

We choose to limit our proposal to providing only five function templates for indexed access to class‘s 

subobjects at this time. 

Alternatives 
Daveed Vandevoorde presented a full compile-time reflection utility – Metacode – in N1471. Our 

proposal is a strict subset of N1471. In contrast, our proposal focuses only on one aspect of reflection 

and suggests only localized changes in the Standard Library.  

A similar effect could be achieved with run-time reflection facility, where information about every 

class is contained in a run-time facility and using it incurs a certain runtime cost. We chose a trade-off 

typical to other common C++ solutions: one that uses template instantiations to favour run-time 

execution optimization at the cost of extending the compilation time.  

Library interface 

The proposed interface for obtaining tuples has a certain flaw. Programmers can mistakenly type a 

fairly meaningless expression std::meta::members(o) (without .value at the end). This may 

lead to some confusion. Even the authors of the proposal occasionally forgot to put the final 

―.value‖.  

As an alternative, we could propose that the tuple (that represent a view of object o) could be accessed 

by shorter expression std::meta::members(o). This would limit the functionality however. 

Without the additional member that can be declared private (―private‖ means ―accessible only to 

friends‖) there is no way, in case of class with private members to guarantee that all friends have 

unlimited access via tuples, whereas at the same time non-friends are not allowed access. We could re-

enable this encapsulation-preserving functionality if we introduced yet another, unprecedented, kind of 

compiler magic, where the same function may be not found during overload resolution in one place 

and may be found in another based only on the function in which the expression is invoked. This, in 

our opinion, would be hard to teach and learn. The solution we propose also requires compiler magic 

(implicit template specialization based on well-defined rules) but this magic is already familiar to C++ 

programmers due to type traits library. Also, implicit friend declaration appears easy to learn. 

An even cleaner alternative would be to use new reserved keywords for getting the tuples. Keywords 

are a natural and elegant way of introducing compiler magic. However, this would require five new 

keywords, and since this proposal has the potential to expand, this may potentially require a big 

number of keywords. Library approach (even if it is magical) appears more suitable. 

We could also propose a pure-library (no compiler magic) solution with limited capabilities. For every 

class that the programmer wants to participate in the reflection framework, she has to define (a perhaps 

member-) function as_tuple defined as: 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2003/n1471.pdf


 auto as_tuple( R& r ) -> decltype(std::tie(r.a, r.b, r.c))  

 { 

  return std::tie(r.a, r.b, r.c); 

 } 

This is more-less the approach that Boost.Spirit took with macros like 

BOOST_FUSION_ADAPT_STRUCT, which we described in the introduction. Such solution has a 

number of limitations: 

1. You have to specify members of your every type twice: first time when you define the type; 

second, when you define the adaptor function/macro. Compiler cannot guarantee that the two 

are in sync. 

2. You cannot have access to private members, unless you are declaring as_tuple as a 

member function; but in that case, you cannot apply this technique retroactively to third-party 

types that you cannot modify. 

3. In fact, you have to specify more than one function for each of your type for different 

―reference variants‖: R&&, R const&, etc. Or you could use a perfect-forwarding template 

and limit the range of allowed arguments with std::enable_if, but requiring this of 

ordinary programmers appears not to be the right way. 

Dependencies 
This proposal requires that changes proposed in N3305

[5]
 are accepted into C++. The paper adds 

constexpr specifiers to a number of operations on tuples. If N3305 is not accepted this proposal 

can still be added to C++ in a limited form: by dropping the requirement that expressions involving 

‗meta‘ functions are core constants expressions. Alternatively, the requirements that expressions like 

meta::members(e).value are core constant expressions can be treated as implicit requirements 

on tuples. 

Wording 

In Table 14 — C++ library headers – add header <meta>. 

Add new paragraph 20.10 after 20.9.7. (Current paragraph 20.10 (Compile-time rational arithmetic) 

becomes 20.11.) 

20.10 Indexed access to class subobjcts [meta.indexed] 

This sub-clause describes templates that may be used to obtain access to user defined non-union class 

types‘ subobjects in form of class template std::tuple (20.4). 

20.10.1 Definitions [meta.indexed.def] 

A thin class is a non-union class that has no non-static data members, except for zero-length 

anonymous bit-fields, and that has no non-thin base classes. 

A meta-compatible class is a non-union class type that does not contain bit-field members of size 

different than zero. 

A straight-member-order class is a meta-compatible class whose all base classes, if any, are either 

(inherited virtually or not) thin classes or inherited non-virtually straight-member-order classes. 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3305.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3305.html


A straight-member-order class is all-publically-accessed if all its non-static data members are public 

and all its non-virtual base classes are derived with public access and are all-publically-accessed. 

Given tuple types P1, P2, ..., PN, let CONCAT<P1, P2, ..., PN> denote a tuple type 

decltype(tuple_cat(declval<P1>(), declval<P2>(), ..., declval<PN>())). 

Given that T denotes a reference type to a possibly cv-qualified 

non-union class type U, and B denotes a non-union class type that U is derived from, let 

BASE_TYPE(B, T) denote a reference type defined in the following way:  

— if T is an rvalue reference then it is an r-value reference to B with the same cv-qualifiers as T, 

otherwise 

— it is an lvalue reference to B with the same cv-qualifiers as T. 

Given that OBJREF denotes a reference to an object of a possibly cv-qualified type U, and B denotes a 

base class of U, let FORWARD_BASE(B, OBJREF) denote a reference to base subobject of 

OBJREF of type BASE_TYPE(B, REFTYPE), where REFTYPE is the type of reference OJBREF. 

20.10.2 Header <meta> synopsis [meta.indexed.synop] 

 namespace std { 

  namespace meta { 

   template <class T> 

   constexpr auto members(T&& obj) noexcept -> see below; 

    
   template <class T> 

   constexpr auto bases(T&& obj) noexcept -> see below; 
    

   template <class T>  

   constexpr auto bases_and_members(T&& obj) noexcept -> see below; 
 

   template <class T> 

   constexpr auto bases_with_virtuals(T&& obj) noexcept -> see below; 

 

   template <class T> 

   constexpr auto recursive_members(T&& obj) noexcept -> see below; 

  

  } // namespace meta 

 } // namespace std 

20.10.3  Function template members [meta.indexed.mem] 

For every type T where decay<T>::type, denoted by U in this subclause, names a meta-

compatible class, let MEMBERS_T<T> denote a non-union class type with the following properties. 

— It is declared in namespace std::meta.  

— It satisfies requirements MoveConstructible.  

— It is a literal type. 

— It has a non-static data member value of type std::tuple<Arg1, Arg2, ..., 

ArgN> with N equal to the number of non-static non-bit-field data members declared in type 

U, and Argi equal to decltype((std::declval<T>().memi)), and memi is the 

name of the i-th non-static non-bit-field data member defined in U. 



— If all non-static data members of U are public, member value is declared with public access, 

otherwise it is defined with private access. 

— It declares as friend class U as well as any function, function template, class or class template 

that U declares as friend. 

template <class T>  

  constexpr auto members(T&& obj) noexcept -> MEMBERS_T<T&&>; 

Returns: prvalue of type MEMBERS_T<T&&> containing object value whose every i-th element 

is a reference to std::forward<T>(obj).memi, where memi is the name of i-th non-static 

non-bit-field data member of U. [Note: satisfying this requirement requires breaking the usual 

access rules if memi is declared as private or protected -- end note] 

Remarks: if decay<T>::type does not denote a meta-compatible class, or if it is an incomplete 

type, the program is ill-formed. 

For any core constant expression (5.19) ce whose type is a meta-compatible class expression 

meta::members(ce).value shall be a core constant expression. For any expression e whose 

type is a meta-compatible class for which expression noexcept(e)evaluates to true, expression 

noexcept(meta::members(e).value) shall evaluate to true. 

20.10.4  Function template bases [meta.indexed.base] 

For every type T where decay<T>::type, denoted by U in this subclause, names a meta-

compatible class, let BASES_T<T> denote a non-union class type with the following properties. 

— It is declared in namespace std::meta.  

— It satisfies requirements MoveConstructible.  

— It is a literal type. 

— It has a non-static data member value of type std::tuple<Arg1, Arg2, ..., 

ArgN> with N equal to the number of base subobjects of U, and Argi equal to 

BASE_TYPE(basei, T&&), and basei being the name of the i-th base subobject of U. 

— If all base subobjects of U are public, member value is declared with public access, 

otherwise it is defined with private access. 

— It declares as friend class U as well as any function, function template, class or class template 

that U declares as friend. 

template <class T>  

  constexpr auto bases(T&& obj) noexcept -> BASES_T<T&&>; 

Returns: prvalue of type BASES_T<T&&> containing object value whose each i-th element is a 

reference to FORWARD_BASE(Bi, obj), where Bi is the name of i-th base class of U. [Note: 

satisfying this requirement requires breaking the usual access rules if U inherits from Bi with 

private or protected access -- end note] 

Remarks: if decay<T>::type does not denote a straight-member-order class, or if it is an 

incomplete type, the program is ill-formed. 



For any core constant expression ce whose type is a straight-member-order class expression 

meta::bases(ce).value shall be a core constant expression. For any expression e whose type 

is a straight-member-order class for which expression noexcept(e)evaluates to true, expression 

noexcept(meta::bases(e).value) shall evaluate to true. 

20.10.5 Function template bases_and_members [meta.indexed.basemem] 

For every type T where decay<T>::type, denoted by U in this subclause, names a straight-

member-order class, let BASES_AND_MEMBERS_T<T> denote a non-union class type with the 

following properties. 

— It is declared in namespace std::meta.  

— It satisfies requirements MoveConstructible.  

— It is a literal type. 

— It has a non-static data member value of type CONCAT<TB, TM>, where TB is equal to 

BASES_T<T&&> and TM is equal to MEMBERS_T<T&&>.   

— If all non-static data members and all base subobjects of U are public, member value is 

declared with public access; otherwise it is defined with private access. 

— It declares as friend class U as well as any function, function template, class or class template 

that U declares as friend. 

 

template <class T>  

  constexpr auto bases_and_members(T&& obj) noexcept 

  -> BASES_AND_MEMBERS_T<T&&>; 

Returns: prvalue of type BASES_AND_MEMBERS_T<T&&> containing object value whose 

every i-th element is a reference to FORWARD_BASE(Bi, obj)for 1 ≤ i ≤ M, and a reference to 

std::forward<T>(obj).memi-M, for M < i ≤ M+N, where M is the number of base 

subobjects of U, memi-M is the name of (i-M)-th non-static non-bit-field data member of U, Bi is the 

name of i-th base class of U. [Note: satisfying this requirement requires breaking the usual access 

rules if U inherits from Bi with private or protected access or if memi-M is a private or protected data 

member -- end note] 

Remarks: if decay<T>::type does not denote a straight-member-order class, or if it is an 

incomplete type, the program is ill-formed. 

For any core constant expression ce whose type is a straight-member-order class expression 

meta::bases_and_members(ce).value shall be a core constant expression. For any 

expression e whose type is a straight-member-order class for which expression 

noexcept(e)evaluates to true, expression noexcept(meta::bases_and_members( 

e).value) shall evaluate to true. 

20.10.6  Function template bases_with_virtuals [meta.indexed.virt] 

template <class T>  

  constexpr auto bases_with_virtuals(T&& obj) noexcept -> BASES_T<T&&>; 



Returns: prvalue of type BASES_T<T&&> containing object value whose each i-th element is a 

reference to FORWARD_BASE(Bi, obj), where Bi is the name of i-th base class of U, and U is 

decay<T>::type. [Note: satisfying this requirement requires breaking the usual access rules if 

U inherits from Bi with private or protected access -- end note] 

Remarks: if decay<T>::type does not denote a meta-compatible class, or if it is an incomplete 

type, the program is ill-formed. 

For any core constant expression ce whose type is a meta-compatible class expression 

meta::bases_with_virtuals(ce).value shall be a core constant expression. For any 

expression e whose type is a meta-compatible class for which expression noexcept(e)evaluates to 

true, expression noexcept(meta::bases_with_virtuals(e).value) shall evaluate to 

true. 

20.10.7  Function template recursive_members [meta.indexed.recurs] 

For every type T where decay<T>::type, denoted by U in this subclause, names a straight-

member-order class, let RECURSIVE_MEMBERS_T<T> denote a non-union class type with the 

following properties. 

— It is declared in namespace std::meta.  

— It satisfies requirements MoveConstructible.  

— It is a literal type. 

— It has a non-static data member value of type CONCAT<TB1, TB2, ..., TBN, TM>, where TM 

is equal to MEMBERS_T<T&&>, TBi is equal to RECURSIVE_MEMBERS_T<BASE_TYPE( 

Bi, T&&)>, Bi is the i-th base subobject of U. 

— If U is all-publically-accessed, member value is declared with public access; otherwise it is 

defined with private access. 

— It declares as friend class U as well as any function, function template, class or class template 

that U declares as friend. 

 

template<class T> 

  constexpr auto recursive_members(T&& obj) noexcept 

  -> RECURSIVE_MEMBERS_T<T&&>; 

Returns: prvalue of type RECURSIVE_MEMBERS_T<T&&> containing object value equal to 

the concatenation of tuples tupB1, tupB2, ..., tupBN, tupM, where tupM is equal to 

members(forward<T>(obj)).value, tupBi is equal to recursive_members( 

FORWARD_BASE(Bi, forward<T>(obj))).value, and Bi is the i-th base subobject of U. 

[Note: satisfying this requirement requires breaking the usual access rules if any of the member 

subobjects referenced by the returned tuple is declared as private or protected -- end note] 

Remarks: if decay<T>::type does not denote a straight-member-order class, or if it is an 

incomplete type, the program is ill-formed. 

For any core constant expression ce whose type is a straight-member-order class expression 

meta::recursive_members(ce).value shall be a core constant expression. For any 

expression e whose type is a straight-member-order class for which expression noexcept(e) 



evaluates to true, expression noexcept(meta::recursive_members(e).value) shall 

evaluate to true. 

20.10.8  Special semantics [meta.indexed.spec] 

Implementation need not specialize and/or instantiate functions members, bases, 

bases_and_members, bases_with_virtuals and recursive_members, or create 

instances of classes these functions return, if it is able to provide in an another way the correct tuple 

return value for expression meta::members(e).value, meta::bases(e).value, and so 

on, and ensure that access to member value obeys normal access rules. 

Implementation need not instantiate tuple types returned by sub-expressions such as 

meta::members(e).value,  meta::bases(e).value, and so on, if it can compute the 

result and side effects of the full expression  by other means [Example: for the following code: 

 struct TT{ 

  int a, b; 
 }; 

  

 bool operator==( TT const& x, TT const& y ) { 
  return std::meta::members(x).value == std::meta::members(y).value; 

 } 

the definition of operator== can be replaced by the implementation with 

 bool operator==( TT const& x, TT const& y ) { 

  return x.a == y.a  &&  y.a == y.b; 

 } 

-- end example] 

Impementability 
This language feature has not been implemented. It cannot be implemented as a library because of two 

kinds of required compiler magic:  

1) The proposed classes require access to all members of all user-defined class types that violates 

the current class member access rules. 

2) Class specializations need to be automatically generated based on non-trivial (although 

automatic) rules.  

In order to emulate the proposal with a library, we emulate 1) by putting explicit friend declarations 

inside every tested class and 2) by explicitly writing each specialization required by the example.  
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