Doc No: N2810=08-0320

Date: 2008-12-01

Author: Pablo Halpern
Cilk Arts, Inc.

phalpern@halpernwightsoftware.com

Defects and Proposed Resolutions for Allocator Concepts

Contents

SUINIMATY ..cviiiiiiiiici bbb b sa et n st e s s enea 1
Document CONVENTIONSccciiiiiiiiiiiiiiiii e 1
Allocator concept does not match all C++03 allocators........cooveueiiieieiiciiiiiiccccce 2
Allocator for vector and string are Under-constrainedcccocveeeveeeieeciieniiecieecee e, 2
Allocator: :rebind is different from C++03 rebind. . 3
Construct Method is Limited t0 value £yPe .. 3
construct element Function is UNNECESSATY..........ccceiiiiiiiiiiiiiiiiiiceeec 4
is scoped allocator Traitis Not Used.......oiiiiiiiiiiiicccccccee 5
scoped _allocator adaptor has errors ... 5
Two Types of scoped allocator adapPtorS .. 6
No Concepts for Allocator Propagation ... 6
Too Many pair CONSLIUCOTS. ...t 7
Appendix A: Modified AllOcator CONCEPLSc.cvveueiriiiriiiiiiiiiniciceeete e 7
Appendix B: Modified scoped allocator adaplfor ... 9
REEIOIICES ...t 12
Summary

This paper is an exposition of a comment submitted in response to the C++0x CD. The
addition of concepts for allocators in the standard library is incomplete and has a number of
defects. Each defect is listed below with a proposed resolution. For easier reference, most of
the proposed changes are aggregated into a modified A11ocator concept (Appendix A) and a
modified scoped allocator adaptor (Appendix B) at the end. Proposed resolutions do
not include detailed clause-by-clause changes, but are intended to be sufficiently detailed to
produce such a clause-by-clause description (i.e., in a future paper).

Document Conventions

All section names and numbers are relative to the October 2008 working draft, N2798.

N2810: Defects and Proposed Resolutions for Allocator Concepts Page 1 of 12

Existing and proposed working paper text is indented and shown in dark blue. Small edits to the working
paper are shown with red-strikeouts-for-deleted-text-and green underlining for inserted text within the indented
blue original text. Large proposed insertions into the working paper are shown in the same dark blue indented
format (no green underling).

Allocator concept does not match all C++03 allocators

The reason that Allocator is declared auto is to support backwards compatibility with
C++03 allocators. Otherwise, the Allocator concept is not the kind of concept that would
normally be declared auto. However, declaring it auto does not fully succeed at providing
this backwards compatibility. C++03 allocators do not have a generic pointer typenora
variadic construct function. Moreover, the non-variadic construct function takes a
pointer argument instead of a T* argument as in the concept. As a result, there are some
C++03 allocators for which there would be no automatically-generated concept map.

Remove the auto modifier from the Allocator concept. This change will make Allocator
cleaner (by avoiding gratuitous use of auto) and will allow additional evolution without the
constraint of automatic compatibility with C++03 allocators. To address the compatibility
problem, require that there be a concept map for Allocator that automatically adapts any
class meeting the requirements of a C++03 allocator.

Allocator for vector and string are Under-constrained

The vector and string templates both expose the fact that their elements are contiguous in
memory. Both templates have data () methods that return a value equivalent to the address
of their first element. It can be deduced, therefore, that Alloc: :pointer must be a raw
pointer to the value type and that allocators using unusual pointer types will not work with
vector or string.

Add concept constraints to vector and string requiring that their allocators use raw
pointers. Le.:

template <ValueType T, Allocator Alloc = allocator<T> >
requires SameType<Alloc::pointer, T*>

&& SameType<Alloc::const pointer, const T*>
class vector { ... };

N2810: Defects and Proposed Resolutions for Allocator Concepts Page 2 of 12

Allocator: :rebind is different from C++03 rebind

The rebind template in the Al1locator concept serves the same purpose as the rebind
template in the C++03 allocator requirements, but uses a different syntax for both definition
and declaration. In the case of a C++03 allocator, rebinding is done by referencing
Alloc::rebind<U>::other, whereas in C++0x, rebinding is done by referencing:
Allocator<Alloc>::rebind<U> (no other nested type). Moreover, the declaration of
rebind in a C++0x concept map is simpler than in a C++03 concept: template <class T>
rebind = MyAlloc<T>; instead of template <class T> struct rebind {
typedef MyAlloc<T> other; };. These differences are confusing and could cause
strange compilation errors when adding constraints to an unconstrained container template.

Rename the rebind template in the Allocator concept to something else. Some ideas are
retype, related instance, sibling, or sibling allocator. Optionally, add a
rebind template that works like C++03 rebind and is implemented in terms of

sibling allocator. The default related instance template can still be implemented
in terms of rebind.

Construct Method is Limited to value_type

The construct method in the A11locator concept only constructs objects of type

value type. This constraint can lead to inconvenient and sometimes inefficient uses of
rebind in order to construct objects of different types. For example, a container type might
allocate objects of type Node<T> from an allocator, alloc , of type allocator type ==
Alloc<Node<T>>. However, some parts of the Node might be initialized independently of
the T object contained within it. Initializing the inner object would require the use of rebind
as follows:

allocator type::rebind<T>(alloc) .construct(p, args);

The above construct is not only hard to read, but it constructs a temporary object of type
Alloc<T>just to call its construct method.

N2810: Defects and Proposed Resolutions for Allocator Concepts Page 3 of 12

(Note: See an alternative resolution in the next issue.) We have already changed construct
to a template in order to support emplace. Itis a small matter, then, to templatized the
pointer argument as well as the constructor arguments:

template<typename T, typename... Args>
requires HasConstructor<T, Args&&...>
void X::construct (T* p, Argsé&&... args)

{

::new ((void*) p) T (forward<Args>(args)...);
}
Note that the rare allocator requiring a very different implementation of construct for each
different data type can use rebind internally in its implementation of construct.

construct element Function is Unnecessary

The construct element function was originally introduced to dispatch the construction of
elements based on whether the allocator was a scoped allocator. The advent of concepts
allows us to add requirements to the construct member function of each allocator, removing
the need for a separate construct element dispatch function.

Remove the global construct element template and remove the construct element
function from the AllocatableElement concept. Move the construct function from the
Allocator concept to the AllocatableElement concept, as shown in Appendix A. This
change will also lift the restriction on construct described in the previous issue. Change
other uses of construct element to use construct directly.

This change, however, will remove the default implementation of construct because such a
default implementation would potentially bypass constraints required by an advanced
allocator (such as a scoped allocator). There are at least two ways regain the default
implementation of construct: 1) Provide a base class containing the most common elements
of an allocator, including a default implementation of construct, as a starting point for most
allocator implementations. 2) Add a new AdvancedAllocator (name open to change)
refinement to A1locator that is used in the negative by a concept map to produce a default
implementation. This solution (shown in Appendix A) has the additional advantage that the
AdvancedAllocator concept can be the basis of some optimizations (e.g., memcpy can be
used for POD types allocated from a non-advanced allocator).

N2810: Defects and Proposed Resolutions for Allocator Concepts Page 4 of 12

See the Appendix A for an embodiment of this proposed resolution.

is_scoped allocator Trait is not Used

The is_scoped allocator trait is still in the WP, but is no longer used since allocator
concepts were introduced. The function of the is scoped allocator trait, to dispatch the
construct_ element functionality, is not handled anywhere.

Remove the is scoped allocator trait. Constrain the construct member function of
any scoped allocator such that an element must be ConstructibleWithAllocator using
the inner allocator type.

See the Appendix B for an embodiment of this proposed resolution.

scoped allocator adaptor has errors

The scoped allocator adapator templates have errors in them, some of which cause
them not to model the Allocator concept in every detail. Specifically:

e There are places where void is used instead of unspecified allocator type.

e The construct and destroy methods take pointer instead of value type*. (But
if the resolution to the construct issue is accepted, it should take a pointer to
template-argument type.)

e Some Allocator constraints are missing.

Correct the errors. See related issues in this paper for other changes that may apply.

See the Appendix B for an embodiment of this proposed resolution.

N2810: Defects and Proposed Resolutions for Allocator Concepts Page 5 of 12

Two Types of scoped allocator adaptors

The WP describes scoped allocator adaptor as a class template with two template
parameters, one for the outer allocator type and one for the inner allocator type. A
specialization of scoped allocator adaptor takes only one template parameter. In the
latter case, not only are both the outer and inner allocators the same type, they are also the
same object. Thus there is a difference between scoped allocator adaptor<Al, Al>,
which holds two distinct instances of type A1, and scoped allocator adaptor<Al>,
which holds a single instance of type A1. This use of a default parameter has already caused
significant confusion.

Use separate names, scoped allocator adaptor and scoped allocator adaptor2
for the single-parameter and dual-parameter adaptor templates, respectively. Remove the
default argument of unspecified allocator type.

See the Appendix B for an embodiment of this proposed resolution.

No Concepts for Allocator Propagation

The allocator propagation traits, allocator propagate never,

allocator propagate on copy construction,

allocator propagate on move assignment, and

allocator propagate on copy assignment are pre-concept ways to express what can
now be expressed with concepts. These traits control the behavior of allocator propagation for
a set of static member functions in the allocator propagation structure. The system is
unnecessarily complex now that we have an Allocator concept into which we can directly
insert the four propagation functions with default implementations.

Add the following four functions and default implementations to the A1locator concept:

Alloc select on container copy construction(const Allocé& x) { return x; }
Alloc select on container move construction(Alloc&é& x) { return x; }
void do on container copy assignment (Allocé& to, Allocé& from) { }

void do on container move assign(Alloc& to, Alloc&& from) { }

void do on container swap(Alloc& a, Alloc& b) { }

Individual allocator types can override these defaults as desired.

N2810: Defects and Proposed Resolutions for Allocator Concepts Page 6 of 12

See the Appendix A for an embodiment of this proposed resolution.

Too Many pair Constructors

The addition of rvalue constructors, variadic constructors, and allocator constructors to pair
has increased the number of explicitly-specified constructors from 3 to 9, making an otherwise
simple class rather arcane.

It should be possible to create a concept for constructing any type from a tuple or tuple-like
object containing the type’s constructor arguments. A pair constructor could be added that
accepts two such “packaged” constructor arguments and passes each one to the constructors
of first and second accordingly. We could then remove the allocator constructors from
pair and instead move them into specializations of ConstructibleWithAllocator.

Separately, we could consider removing the variadic constructors from pair by allowing
containers like map and unordered map to construct first and second independently.

Appendix A: Modified Allocator Concepts

Although this section does not describe clause-for-clause changes to the draft, the concept
changes below provide a more formal description of most of the proposed resolutions
described above.

awte concept Allocator<typename X>
CopyConstructible<X>, EqualityComparable<X> {

ObjectType value type = typename X::value type;
BereferenceablteHasDereference pointer = see below;
bereferenceabtelasDereference const pointer = see below;
requires Regular<pointer>

&& RandomAccessIterator<pointer>

&& Regular<const pointer>

&& RandomAccessIterator<const_pointer>;
SignedIntegrallike difference type =

RandomAccessIterator<pointer>::difference type;

typename generic pointer = void*;
typename const generic pointer = const void*;
typename reference = value typeé&;
typename const reference = const value typeé&;
UnsignedIntegrallLike size type = see below;
template<ObjectType T> class xebindrelated instance = see below;

N2810: Defects and Proposed Resolutions for Allocator Concepts Page 7 of 12

requires Destructible<value type>
requires Convertible<pointer, con
&& Convertible<pointer, gen
&& SameType<pointer::refere
&& SameType<pointer::refere
requires Convertible<const pointe
&& SameType<const pointer::
&& SameType<const pointer::
requires SameType<¥ebindrelated i

4

st pointer>

eric pointer>

nce, value type&>

nce, reference>;

r, const generic pointer>

reference, const value typeé&>

reference, const reference>;

nstance<value type>, X>;

requires SameType<generic pointer
, ¥ebindrelated 1

nstance<unspecified unique

type>: :generic pointer>;
/I see description of generic pointer,
requires SameType<const_ééneric_p
, Febindrelated instan

below
ointer
ce< unspecified unique

type>: :const generic pointer>;
/I see description of generic pointer,

pointer X::allocate(size type n);
pointer X::allocate(size type n,

below

const generic pointer p);

void X::deallocate (pointer p, size type n);

size type X::max size() const ({

return numeric limits<size type>::max(); }

template<ObjectType T>
X::X (const ¥ebindrelated inst

ance<T>& vy);

+ mr] A+ 7z nam Nvrerar
bcllltJ_L(AbC L,yt./ TICOIIT . e nJ_‘tjx)
rorirr o oo Aamat gt A rxzn T 00 4+ x 7~ DNreya & C
J_C_iLAJ_J_ =] TITOO OThHhO T C LS T Cr 7k,jr/c, nJ_\j;JU(U(-
tze A A SIS P A TN I EE S NN LN Nreya O C N e)
A S W COTTh O T Cr k,\ LT Cr 7k,jr/c r/, nJ_\j».)U(U((/I.J_\j».)/
noatg ((~7~2 AKX\) 7z 13 + sz (Frrgnrr AN v [N rera) A}
TV \\ A Sy W § / t/[T Cr 7k,jr/c \J_\JJ_VV(AJ_\A nJ_\j».) \(/I.J_gg)/ /,
void X::destroy(value type* p) {
addressof (*p) ->~value type();
pointer X::address(reference r) const {

return addressof (r); //seebelow

const pointer X::address(const re
return addressof (r); [/l see below

ference r) const {

Alloc select on container copy construction(const Allocé& x)

{ return x; }

Alloc select on container move construction(Alloc&& x)

{ return x;

}

void do on container copy assignment (Allocé& to,

Allocé& from)

{

}

void do on container move assign (Allocé& to, Allocé&& from)

{

}

N2810: Defects and Proposed Resolutions for Allocator Concepts

Page 8 of 12

void do on container swap(Allocé& a,

Allocé& b) { }

template <typename Alloc>

requires Some auto concept that matches C++03 Allocators

concept map Allocator<Alloc> {

Map C++0x allocator functionality onto C++03 allocator

concept AdvancedAllocator<typename X>

Allocator<xX>

{

}

auto concept AllocatableElement<class Alloc, class T, class... Args>
{
requires Allocator<Alloc>;
vold =zt e L e =
Alloc::construct (T* t, Argsé&&... args);
}
template <Allocator Alloc, class T, class... Args>

requires !

concept map AllocatableElement<Alloc,

args)
reetnew T ((void*)t,

AdvancedAllocator<Alloc> && HasConstructor<T, Args...>
T, Argsé&&...>

forward(args) ...

Appendix B: Modified scoped allocator adaptor

template<Allocator SwterAAlloc>

class scoped allocator adaptor<-SwterAAllocy G >
public 6uterAAlloc

{
public:

typedef SwterAAlloc outer allocator type;
typedef ©wtexrAAlloc inner allocator type;
// outer and inner allocator types are the same.

typedef
typedef
typedef
typedef
typedef
typedef

typename
typename
typename
typename
typename
typename

typedef
typedef
typedef

typename
typename
typename

template <ObjectType

N2810: Defects and Proposed Resolutions for Allocator Concepts

Allocator<outer allocator type>:
Allocator<outer allocator type>:
Allocator<outer allocator type>:
Allocator<outer allocator type>:
Allocator<outer allocator type>:
Allocator<outer allocator type>:

Allocator<outer allocator type>:
Allocator<outer allocator type>:
Allocator<outer allocator type>:

_Tp>

:size type
:difference type difference type;
:pointer
:const pointer
:generic pointer generic pointer;
:const_generic pointer

size type;

pointer;
const_pointer;

const generic pointer;

:reference reference;
:const_reference const reference;
:value type value type;

Page 9 of 12

struct rebind

{
typedef scoped allocator adaptor<
Allocator<—owterAAlloc >::rebindrelated instance< Tp>;—void
> other;

}s

scoped allocator adaptor();

scoped allocator adaptor (scoped allocator adaptoré&&);
scoped allocator adaptor (const scoped allocator adaptoré&);
scoped allocator adaptor (ewterAAlloc && outerAlloc);
scoped allocator adaptor (const SwterAAllocé& outerAlloc);

template <Allocator SutexrAAlloc2>
requires Convertible<—OuterAAlloc2&&, SwterAAlloc>
scoped allocator adaptor (
scoped allocator adaptor<—SuwterAAlloc2;—vetd>&s&);
template <Allocator SutexrAAlloc2>
requires Convertible<const owterAAlloc2&, owterAAlloc>
scoped allocator adaptor (
const scoped allocator adaptor<-outerAAllocl;—void>&);

~scoped allocator adaptor();

pointer address (reference x) const;
const pointer address(const reference x) const;

pointer allocate(size type n);

pointer allocate(size type n, const generic pointer u);
void deallocate (pointer p, size type n);

size type max size () const;

template <class... Args>
requires HasCenstrwetor
ConstructibleWithAllocator<value type, Alloc, Argsé&&...>
void construct (pointer p, Argsé&é&... args);
template <Allocator Alloc2, class... Args>
requires ConstructibleWithAllocator<value type, Alloc2, Argsé&é&...>
void construct (value type* p, allocator arg t,
const Alloc2&, Argsé&&... args);
void destroy(pointer p);

const outer allocator typeé& outer allocator();
const inner allocator typeé& inner allocator();

b

template<&ypenameAllocator OuterA, £ypemameAllocator InnerA>
class scoped allocator adaptorZ : public OuterA

{

public:
typedef OuterA outer allocator type;
typedef InnerA inner allocator type;

N2810: Defects and Proposed Resolutions for Allocator Concepts Page 10 of 12

typedef
typedef
typedef
typedef
typedef
typedef

typedef
typedef
typedef

template <ObjectType
struct rebind

{

typename
typename
typename
typename
typename
typename

typename
typename
typename

Allocator<outer allocator type>:
Allocator<outer allocator type>:
Allocator<outer allocator type>:
Allocator<outer allocator type>:
Allocator<outer allocator type>:
Allocator<outer allocator type>:

Allocator<outer allocator type>:
Allocator<outer allocator type>:
Allocator<outer allocator type>:

_Tp>

typedef scoped allocator adaptor<

>
}i

Allocator<OuterA>::related instance< Tp>,

other;

scoped allocator adaptor2();
scoped allocator adaptor2 (outer allocator typeé&& outerAlloc,
inner allocator typeé&é& innerAlloc);
scoped allocator adaptor2(const outer allocator type& outerAlloc,
const inner allocator type& innerAlloc);
scoped allocator adaptor2 (scoped allocator adaptoré&& other);
scoped allocator adaptor2(const scoped allocator adaptoré& other);

template <Allocator OuterA2>

requires Convertible<OuterA2&§&,

scoped allocator adaptor (
scoped allocator adaptor2<OuterA2&, InnerA>&&);
template <Allocator OuterA2>

requires Convertible<const OuterA2g,

scoped allocator adaptor (
const scoped allocator adaptorZ<OuterA2&, InnerA>&);

~scoped allocator adaptor?2();

pointer

const pointer address(const reference x)

address (reference Xx)

pointer allocate(size type n);

pointer allocate(size type n,

void deallocate (pointer p,
size type max size()

template <class...
requires

WAl I 11t o~
ITooTcUoIroc Tt utCcToOT

const;

Args>

ot

:size type
:difference type difference type;
:pointer
:const pointer
:generic pointer generic pointer;
:const generic pointer

:reference
:const reference const reference;
:value type

OuterA>

size type n);

size type;
pointer;

const pointer;
const generic pointer;

reference;

value type;

InnerA

OuterA>

const;
const;

const generic pointer u);

ConstructibleWithAllocator<value type, Alloc, Argsé&é&...>

void construct (value type* p, Argsé&é&...
template <Allocator Alloc2,

class...

args) ;

Args>

N2810: Defects and Proposed Resolutions for Allocator Concepts

Page 11 of 12

requires ConstructibleWithAllocator<value type,

Args&é&...>

void construct (value type* p, allocator arg t,

const Alloc2&, Argsé&é&... args);

void destroy(value type* p);

const outer allocator type& outer allocator ()
const inner allocator typeé& inner allocator()

}s

template <Allocator Alloc>

concept map AdvancedAllocator<scoped allocator adaptor<Alloc> > {

)

template <Allocator Al, Allocator A2>

concept map AdvancedAllocator<scoped allocator adaptor2<Al,

A2> > {

}

References

All documents referenced here can be found at
http://www.open-std.org/[TC1/SC22/WG21/docs/papers/2008/.

N2768: Allocator Concepts, part 1 (revision 2)

N2654: Allocator Concepts (Rev 1)

N2554: The scoped allocator model (Rev 2)

N2525: Allocator-specific move and swap

N2621: Core Concepts for the C++0x Standard Library
N2623: Concepts for the C++0x Standard Library: Containers

N2810: Defects and Proposed Resolutions for Allocator Concepts

Page 12 of 12

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2768.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2654.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2554.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2525.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2621.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2623.pdf

