
Named Requirements for C++0X Concepts, version 2

Document #: WG21/N2780 = J16/08-0290
Date: 2008-09-18
Revises: N2581
Project: Programming Language C++
Reference: ISO/IEC IS 14882:2003(E)
Reply to: Walter E. Brown <wb@fnal.gov>

Chris Jefferson <chris@bubblescope.net>
Alisdair Meredith <alisdair.meredith@codegear.com>
James Widman <widman@gimpel.com>

Contents

1 Introduction 1

2 Proposed wording 1

3 Acknowledgments 3

Reality: What a concept!

— ROBIN WILLIAMS

1 Introduction

This paper updates the proposed wording of N2581. It deletes one section as requested by the
Evolution Working Group, and incorporates all changes requested by the Core Working Group.

2 Proposed wording

This section’s proposed wording is with respect to N2741. This proposal is purely an extension to
N2741; except for very small additions to the underlying grammar, it requires no changes to any
existing wording.

In 14.9.3 [concept.refine], augment the grammar definition of requirement-specifier; in 14.10.1
[temp.req], augment the grammar definition of requirement and add a grammar definition of
concept-instance-alias-def . Text to be added is indicated in red:

1

mailto:wb@fnal.gov
mailto:chris@bubblescope.net
mailto:alisdair.meredith@codegear.com
mailto:widman@gimpel.com


2 N2780: Named Requirements for C++0X Concepts, version 2

refinement-specifier :
concept-instance-alias-defopt ::opt nested-name-specifieropt concept-id

requirement :
concept-instance-alias-defopt ::opt nested-name-specifieropt concept-id
! ::opt nested-name-specifieropt concept-id

concept-instance-alias-def :
identifier =

Append the following new paragraph to 3.3.1 [basic.scope.pdecl]:

The point of declaration for the identifier in a concept-instance-alias-def is immediately after
the concept-id of its requirement or refinement-specifier.

Append the following after 14.10.1 [temp.req] p5 (“A negative requirement requires...”):

A concept-instance-alias-def defines its identifier to be an alias of the concept instance given
in its requirement or refinement-specifier. When the concept-instance-alias-def appears in a
member-requirement (9.2), the potential scope of the identifier begins at its point of declaration
and terminates at the end of the constrained member’s declaration. When the concept-instance-
alias-def appears in the optional requires-clause of an axiom-definition (14.9.1.4), the potential
scope of the identifier begins at its point of declaration and terminates at the end of the axiom-
definition. Otherwise, a concept-instance-alias-def inserts the identifier as a name in the scope
of:

• the template parameters of the concept, when the concept-instance-alias-def appears in a
refinement-specifier (14.9.3);

• the enclosing concept, when the concept-instance-alias-def appears in an associated-requirement
(14.9.1.3); or

• the template parameters declared in the template-parameter-list immediately before the
requires keyword, when the concept-instance-alias-def appears in the optional requires-
clause of a template-declaration.

[ Example:

1 concept A<typename X, typename Y, typename Z> {
2 typename result_type;
3 }

5 concept B<typename X, typename Y> {
6 typename result_type;
7 }

9 concept C<typename T> {
10 typename R;
11 }

13 template<typename T>
14 requires J = C<T>



N2780: Named Requirements for C++0X Concepts, version 2 3

15 J::R f( T );
16 // qualified lookup finds type name R within the concept C (3.4.3.3)

18 auto concept D<typename Op, typename Elem> {
19 requires a = A<Op, Elem, Elem>;
20 requires B<a::result_type, Elem>;
21 typename result_type = a::result_type;
22 };

—end example ]

If a concept-instance-alias-def appears in a requirement that is the pattern of a pack expansion,
the program is ill-formed. [ Example:

1 concept C<typename ... Ts> {}

3 template<typename ... Ts>
4 requires a = C<Ts>... // error: requirement aliases may refer only
5 // to requirements that are not pack expansions
6 void
7 f( Ts... );

—end example ]

3 Acknowledgments

We thank the Fermi National Accelerator Laboratory’s Computing Division, sponsor of Fermilab’s
participation in the C++ standards effort, for its past and continuing support of efforts to improve
C++ for all our user communities.


	1 Introduction
	2 Proposed wording
	3 Acknowledgments

