, symantec.

Programmer Directed GC for C++

, symantec. mg

Garbage Collection

» Automatically deallocates memory of objects that are no longer in
use.

> For many popular languages, garbage collection is the only way to
reclaim memory

» Non-memory resources typically need to be released explicitly
» Has interesting tradeoffs with explicit memory management

= Speed

= Space

= Latency

= Virtual memory

= etc.

Symantec Research Labs

, symantec.

Garbage Collection for C++—Motivation

>

For many data structures, object lifetime is difficult to manage statically
= Some sort of dynamic technique is often required
C++ is now increasingly ruled out as an implementation language for the

many programs and developers that do not require manual memory
management

= Vanilla C++ programs should have the option of ignoring memory management
when not critical

Even for explicitly managed programs, accurately identifying leaked
objects is valuable

= Leak detectors
= “Litter collection”

C++ garbage collection technology is mature and ripe for standardization
= Has been used extensively in a wide variety of scenarios for over a decade
= Our proposal is closely tied to what has been shown by experience to work

Symantec Research Labs

, symantec. ﬂﬂ

Optional garbage collection

> We definitely do not propose turning C++ into a pure garbage
collected language

> Explicit memory management is critical for many classes of
programs

= Systems programming
= Programs that make heavy use of virtual memory

= Programs with specialized performance requirements

» Our proposal allows garbage collection to be freely mixed with
explicit memory management

Symantec Research Labs

’ symantec.

Basic Use

» Source code changes are minimal
= To use garbage collection, put “gc_required;” somewhere in your program
= Existing object libraries can generally be used without recompilation
» |f garbage collection is enabled, memory can be reclaimed either by
explicit deletion or by the collector
= Enabling garbage collection on an explicitly managed program is a no-op

= ...unless it has leaks, in which case the garbage collector can protect against
memory leaks (“litter collection”). This has proven very useful in practice

* As a example, one telco had a multi-million line executable that leaked
memory on a large switch, requiring a reboot every hour. This program used
200 threads and 500MB heap. After enabling litter collection, the program
was able to run indefinitely

Symantec Research Labs

, symantec. ﬂﬂ

Comparison to shared_ptr

» Complements reference counted smart pointers

» Advantages
= Speed

= Can reclaim data structures that aren’t DAGs (reference counting fails
to reclaim cycles)

= Interoperability: can reuse the billions of lines of existing C/C++ code

= Suitable for programming in a pure GC-style on a par with any
existing garbage collected languages

= Can litter collect

= Easy interoperation with explicit deletion

= Easier migration from explicitly managed code
= Avoids some problems with destructors

Symantec Research Labs

, symantec.

Shared_ptr performance comparison

Execution Time (msecs, 2GHz Xeon)

22000
20000 -
183000
16000 -
14000
12000

C expl. free

Symantec Research Labs

Boost

GC

Thread unsafe —
Thread safe —

HotSpot Gcej

’ symantec.

Single-heap model

> (Almost) all memory is subject to reclamation by either explicit
deletion or garbage collection

» We don'’t allow restriction of garbage collection to particular types
or objects

= This effect can be achieved by explicitly deleting other classes

= |If you designated a class like the following (but no others) as subject
to garbage collection
class A { vector<A *> v; };
data allocated by the A: : v would be leaked because vector<>
would allocate non-garbage collected memory

= Passing pointers from one component to another quickly becomes
confusing

= Not very friendly to generics

= May be best handled with a separate pointer type (e.g. shared_ptr or
C++/CLI)

Symantec Research Labs

’ symantec.

What about non-memory resources?

> Not reclaimed by garbage collection

> Although significant, this has not proven a showstopper in other
garbage collected languages and is typically less of an issue in
C++ garbage collection due to the wealth of explicit management
options (e.g., see next slide)

» We are considering annotations to help detect if a class is
modified to use a non-memory resource

= This should be thought of as an opportunity to provide better GC than
in other languages

» Could also be handled by finalization

Symantec Research Labs

, symantec. ﬂﬂ

When to use shared ptr?

> |f you only need to automatically manage a few types or data structures

= shared ptr has cost proportional to the amount of automatically managed
memory, while GC cost is proportional to total memory

If you need to manage objects that control non-memory resources
> If you need prompt deletion

You have strict latency requirements (although watch out for destructor
cascades)

Virtual memory performance is important

Large objects
Bottom-line—Like we said before, shared ptr complements GC

v v.v'Yy

Can be used together

Symantec Research Labs

§ oymantec.

Why standardize?

> Access to the type system is often required for high-quality
garbage collection. This has often proven a limiting factor in
practice.

> Need to proscribe GC-unsafe optimizations (Such optimizations
threaten leak detectors as well).

= Not really an issue yet, but could definitely change

> Allow components to more easily share automatically managed
objects

» Many users require stamp of approval and believe that C++ is not
an option if they don’t wish to explicitly manage memory

Symantec Research Labs

, symantec. ME

The proposal

» Hews closely to existing practice

= “No untried functionality”

= Use existing practice for both garbage collection and litter collection
> Implementable with simple syntactic sugar on existing engines
» Defines reachability

» Main syntactic change is annotations two ideas:

= Whether this translation unit requires, forbids, or allows garbage
collection

= Whether a region of code stores pointers in non-pointer types,
allowing accurate (as opposed to conservative) collection.

» A small number of APls

Symantec Research Labs

’ symantec.

Permitting or forbidding collection

> gc_safe—This translation unit works in either garbage collected or

explicitly managed programs. All standard libraries are required to be
gc safe; This is the default.

= Using GC on existing unannotated libraries is very useful (e.g., litter collection)
= Experience shows failures more likely from changing allocators than adding GC.

> gc_required—This translation unit relies on a garbage collector to
reclaim some objects

» gc forbidden—This translation unit cannot be used in garbage
collected programs. (E.g., it hides pointers with the xor-trick)

Example:
gc_required;
// Remaining code as normal

» Program will fail to compile/link with inconsistent declarations

Symantec Research Labs

’ symantec.

Reachability annotations

> gc strict—The annotated code is type-safe (Specifically, it
does not store pointers in primitive non-pointer types.)

> gc relaxed—The annotated code may store pointers in non-

pointer types (e.g. storing a pointer in an integer). This is the
default. For relaxed code, the collector needs to conservatively
scan all primitive datatypes for pointers.

Example:
gc_strict {
// Type-safe code here
// (Typically entire program)
}

> Even explicitly managed programs can benefit from reachability
annotations (e.g., memory diagnostic tool output should improve).

Symantec Research Labs

, symantec. mg

A few more examples

» Can annotate on a finer grain if necessary
gc _strict class A {
A *next;
B b;
int data[1000000]; // Won’t contain pointers
yi
> Note that we don’t know whether b is strict or relaxed. That is
determined where B was defined. This (properly) eliminates the
need for non-local knowledge. Just look at the explicitly-
mentioned primitive types in the annotated code.

Symantec Research Labs

, symantec. QE

APls

> Dbool std::1is garbage collected()

> To allocate memory that will not be subject to GC, even in a
garbage collected program (This allows you to do the XOR-trick
even in a garbage collected program)

" new(std::nogc)
" nogc allocator.allocate()
" nogc malloc()

> std::gc disable gc()/gc enable gc ()—Temporarily

prevent ggrbage collection (Thiﬁk of as a “critical section”).

> Dbool std::gc collect(); Now would be a good time to GC

> std::gc _add root();

Symantec Research Labs

’ symantec.

What about finalization?

» Broken off into separate proposal
» 80-20 rule

= Almost all of the value of GC is still retained without finalizers
= Almost all of the complication comes from finalizers

» The primary complication comes from interaction with the optimizer. Basically, dead
variable elimination can cause an object’'s memory may become unreachable while
non-memory resources managed by the object are still in use.

= In other languages, this can result in intermittent errors that won’t be caught in QA
= But there are some options
» Still, there are good use cases worth considering

= E.g., distributed reference counts, weak hash tables, diagnostics for collecting objects,
managing hon-memory resources

» Decoupling proposals have some benefit
= Sufficiently independent to avoid delaying/muddying GC proposal

. fExperience with standardized GC could help shape an appropriate finalization approach in the
uture

Symantec Research Labs

§ oymantec.

Impact on operator new()

» Allocation of garbage collected objects will not go through
operator new ()

= Many collectors are inextricably linked to allocation

= operator new () signature not sufficient for communicating type
information

> Programs that redefine : : operator new () will continue to work
but will not benefit from garbage collection

> Classes with class-specific allocators will work but will not be
garbage collected

= Their memory will be scanned for pointers (respecting strictness)
= The underlying pools may be collected
= STL containers will only be collected if they use the default allocator

Symantec Research Labs

, symantec. ME

Comparison to other language GC

» Hews closely to traditional C++ GC, where there is a lot of
experience with this model

Objects subject to explicit deletion as well as garbage collection

» C++ programs typically generate far less garbage than Java
programs due to large amount of stack allocation and explicit

deletion
= Collection cycles can be much less frequent.
= Sometimes only a few per hour, reducing GC overhead to <1%

Symantec Research Labs

, symantec. ﬂﬂ

Implementation Status

> Underlying technology mature with over a decade of industrial use
for both pure garbage collection, mixed model, and litter collection

» Reference implementation based on g++ 4.1.2 in process. Will be
complete for July meeting

» Reference implementation will include standardese

» Reference implementation will improve a “best practices”
programming guide

Symantec Research Labs

, symantec.

Some Concerns

» Non-memory resources (as above)

» Making all objects subject to GC and entire heap subject to scanning (as
above) as contrasted with a desire to just collect individual classes

> Risk of desired libraries being gc forbidden or gc required and
therefore incompatible with a particular application

= Nearly all libraries expected to be gc_safe for this reason
= Similar to the situation with threads

» Difficulties in validating whether unannotated legacy libraries are really
safe for collection

= Similar to the situation with memory models
To what extent should root sets be standardized?
Lack of finalization (as above)
Performance profile (e.g., VM)
Enabling/disabling GC at link and run-time
Lack of experience with the reachability annotations
Distinguishing “real” leaks from expected collection

Symantec Research Labs

v v vy v Vv Y

, symantec. ME

Process status

> Voted into registration standard

> Recently received considerable discussion on the reflector

describing concerns and questions of some committee members,
such as those listed above

> We remain comfortable that standardizing GC along the main

lines of the proposal in the C++09 timeline is both appropriate and
beneficial

» Meaningful time at this week’s standards meeting will be devoted
to these questions

Symantec Research Labs

