
Programmer Directed GC for C++

Michael Spertus

N2286=07-0146 

April 16, 2007



Symantec Research Labs 2

Garbage Collection

Automatically deallocates memory of objects that are no longer in 
use.

For many popular languages, garbage collection is the only way to 
reclaim memory

Non-memory resources typically need to be released explicitly

Has interesting tradeoffs with explicit memory management

� Speed

� Space

� Latency

� Virtual memory

� etc.



Symantec Research Labs 3

Garbage Collection for C++—Motivation

For many data structures, object lifetime is difficult to manage statically

� Some sort of dynamic technique is often required

C++ is now increasingly ruled out as an implementation language for the 
many programs and developers that do not require manual memory 
management

� Vanilla C++ programs should have the option of ignoring memory management 
when not critical

Even for explicitly managed programs, accurately identifying leaked 
objects is valuable

� Leak detectors

� “Litter collection”

C++ garbage collection technology is mature and ripe for standardization

� Has been used extensively in a wide variety of scenarios for over a decade

� Our proposal is closely tied to what has been shown by experience to work



Symantec Research Labs 4

Optional garbage collection

We definitely do not propose turning C++ into a pure garbage 

collected language

Explicit memory management is critical for many classes of 

programs

� Systems programming

� Programs that make heavy use of virtual memory

� Programs with specialized performance requirements

Our proposal allows garbage collection to be freely mixed with 

explicit memory management



Symantec Research Labs 5

Basic Use

Source code changes are minimal

� To use garbage collection, put “gc_required;” somewhere in your program

� Existing object libraries can generally be used without recompilation

If garbage collection is enabled, memory can be reclaimed either by 

explicit deletion or by the collector

� Enabling garbage collection on an explicitly managed program is a no-op

� …unless it has leaks, in which case the garbage collector can protect against 

memory leaks (“litter collection”). This has proven very useful in practice

• As a example, one telco had a multi-million line executable that leaked 

memory on a large switch, requiring a reboot every hour. This program used 

200 threads and 500MB heap. After enabling litter collection, the program 

was able to run indefinitely



Symantec Research Labs 6

Comparison to shared_ptr

Complements reference counted smart pointers

Advantages

� Speed

� Can reclaim data structures that aren’t DAGs (reference counting fails 
to reclaim cycles)

� Interoperability: can reuse the billions of lines of existing C/C++ code

� Suitable for programming in a pure GC-style on a par with any 
existing garbage collected languages

� Can litter collect

� Easy interoperation with explicit deletion

� Easier migration from explicitly managed code

� Avoids some problems with destructors



Symantec Research Labs 7

Shared_ptr performance comparison



Symantec Research Labs 8

Single-heap model

(Almost) all memory is subject to reclamation by either explicit
deletion or garbage collection

We don’t allow restriction of garbage collection to particular types 
or objects

� This effect can be achieved by explicitly deleting other classes

� If you designated a class like the following (but no others) as subject 
to garbage collection
class A { vector<A *> v; };

data allocated by the A::v would be leaked because vector<>
would allocate non-garbage collected memory

� Passing pointers from one component to another quickly becomes 
confusing

� Not very friendly to generics

� May be best handled with a separate pointer type (e.g. shared_ptr or 
C++/CLI)



Symantec Research Labs 9

What about non-memory resources?

Not reclaimed by garbage collection

Although significant, this has not proven a showstopper in other

garbage collected languages and is typically less of an issue in

C++ garbage collection due to the wealth of explicit management 

options (e.g., see next slide)

We are considering annotations to help detect if a class is 

modified to use a non-memory resource

� This should be thought of as an opportunity to provide better GC than 

in other languages

Could also be handled by finalization



Symantec Research Labs 10

When to use shared_ptr?

If you only need to automatically manage a few types or data structures

� shared_ptr has cost proportional to the amount of automatically managed 

memory, while GC cost is proportional to total memory

If you need to manage objects that control non-memory resources

If you need prompt deletion

You have strict latency requirements (although watch out for destructor 

cascades)

Virtual memory performance is important

Large objects

Bottom-line—Like we said before, shared_ptr complements GC

Can be used together



Symantec Research Labs 11

Why standardize?

Access to the type system is often required for high-quality 

garbage collection. This has often proven a limiting factor in 

practice.

Need to proscribe GC-unsafe optimizations (Such optimizations 

threaten leak detectors as well).

� Not really an issue yet, but could definitely change

Allow components to more easily share automatically managed 

objects

Many users require stamp of approval and believe that C++ is not

an option if they don’t wish to explicitly manage memory



Symantec Research Labs 12

The proposal

Hews closely to existing practice

� “No untried functionality”

� Use existing practice for both garbage collection and litter collection

Implementable with simple syntactic sugar on existing engines

Defines reachability

Main syntactic change is annotations two ideas:

� Whether this translation unit requires, forbids, or allows garbage 
collection

� Whether a region of code stores pointers in non-pointer types, 
allowing accurate (as opposed to conservative) collection.

A small number of APIs



Symantec Research Labs 13

Permitting or forbidding collection

gc_safe—This translation unit works in either garbage collected or 

explicitly managed programs. All standard libraries are required to be 
gc_safe; This is the default.

� Using GC on existing unannotated libraries is very useful (e.g., litter collection)

� Experience shows failures more likely from changing allocators than adding GC.

gc_required—This translation unit relies on a garbage collector to 

reclaim some objects

gc_forbidden—This translation unit cannot be used in garbage 

collected programs. (E.g., it hides pointers with the xor-trick)

Example:

gc_required;

// Remaining code as normal

Program will fail to compile/link with inconsistent declarations



Symantec Research Labs 14

Reachability annotations

gc_strict—The annotated code is type-safe (Specifically, it 

does not store pointers in primitive non-pointer types.)

gc_relaxed—The annotated code may store pointers in non-

pointer types (e.g. storing a pointer in an integer). This is the 

default. For relaxed code, the collector needs to conservatively

scan all primitive datatypes for pointers.

Example:

gc_strict {

// Type-safe code here

// (Typically entire program)

}

Even explicitly managed programs can benefit from reachability

annotations (e.g., memory diagnostic tool output should improve).



Symantec Research Labs 15

A few more examples

Can annotate on a finer grain if necessary
gc_strict class A {

A *next;

B b;

int data[1000000]; // Won’t contain pointers

};

Note that we don’t know whether b is strict or relaxed. That is 

determined where B was defined. This (properly) eliminates the 

need for non-local knowledge. Just look at the explicitly-

mentioned primitive types in the annotated code.



Symantec Research Labs 16

APIs

bool std::is_garbage_collected()

To allocate memory that will not be subject to GC, even in a 

garbage collected program (This allows you to do the XOR-trick 

even in a garbage collected program)

� new(std::nogc)

� nogc_allocator.allocate()

� nogc_malloc()

std::gc_disable_gc()/gc_enable_gc()—Temporarily 

prevent garbage collection (Think of as a “critical section”).

bool std::gc_collect(); Now would be a good time to GC

std::gc_add_root();



Symantec Research Labs 17

What about finalization?

Broken off into separate proposal

80-20 rule

� Almost all of the value of GC is still retained without finalizers

� Almost all of the complication comes from finalizers

The primary complication comes from interaction with the optimizer. Basically, dead 
variable elimination can cause an object’s memory may become unreachable while 
non-memory resources managed by the object are still in use.

� In other languages, this can result in intermittent errors that won’t be caught in QA

� But there are some options

Still, there are good use cases worth considering

� E.g., distributed reference counts, weak hash tables, diagnostics for collecting objects, 
managing non-memory resources

Decoupling proposals have some benefit

� Sufficiently independent to avoid delaying/muddying GC proposal

� Experience with standardized GC could help shape an appropriate finalization approach in the 
future



Symantec Research Labs 18

Impact on operator new()

Allocation of garbage collected objects will not go through 
operator new()

� Many collectors are inextricably linked to allocation

� operator new() signature not sufficient for communicating type 
information

Programs that redefine ::operator new() will continue to work 
but will not benefit from garbage collection

Classes with class-specific allocators will work but will not be 
garbage collected

� Their memory will be scanned for pointers (respecting strictness)

� The underlying pools may be collected

� STL containers will only be collected if they use the default allocator



Symantec Research Labs 19

Comparison to other language GC

Hews closely to traditional C++ GC, where there is a lot of 

experience with this model

Objects subject to explicit deletion as well as garbage collection

C++ programs typically generate far less garbage than Java 

programs due to large amount of stack allocation and explicit 

deletion

� Collection cycles can be much less frequent.

� Sometimes only a few per hour, reducing GC overhead to <1%



Symantec Research Labs 20

Implementation Status

Underlying technology mature with over a decade of industrial use 

for both pure garbage collection, mixed model, and litter collection

Reference implementation based on g++ 4.1.2 in process. Will be 

complete for July meeting

Reference implementation will include standardese

Reference implementation will improve a “best practices”

programming guide



Symantec Research Labs 21

Some Concerns

Non-memory resources (as above)

Making all objects subject to GC and entire heap subject to scanning (as 
above) as contrasted with a desire to just collect individual classes

Risk of desired libraries being gc_forbidden or gc_required and 
therefore incompatible with a particular application

� Nearly all libraries expected to be gc_safe for this reason

� Similar to the situation with threads

Difficulties in validating whether unannotated legacy libraries are really 
safe for collection

� Similar to the situation with memory models

To what extent should root sets be standardized?

Lack of finalization (as above)

Performance profile (e.g., VM)

Enabling/disabling GC at link and run-time

Lack of experience with the reachability annotations

Distinguishing “real” leaks from expected collection



Symantec Research Labs 22

Process status

Voted into registration standard

Recently received considerable discussion on the reflector 

describing concerns and questions of some committee members, 

such as those listed above

We remain comfortable that standardizing GC along the main 

lines of the proposal in the C++09 timeline is both appropriate and 

beneficial

Meaningful time at this week’s standards meeting will be devoted 

to these questions


