
Doc no: N1980=06-0050
Date: 2006-04-24
Reply-To: Gabriel Dos Reis

gdr@cs.tamu.edu

Generalized Constant Expressions — Revision 3

Gabriel Dos Reis Bjarne Stroustrup

Texas A&M University

Abstract

This paper generalizes the notion of constant expressions to include constant-
expression functions and user-defined literals. In addition, some floating-
point constant expressions are allowed. The goal is to improve support for
generic programming, systems programming, and library building, and to in-
crease C99 compatibility. The proposal allows us to remove long-standing
embarassments from some Standard Library components (notably <limits>).

Introduction

This paper generalizes the notion of constant expressions to include calls to “suf-
ficiently simple” functions (constant-expression functions) and objects of user-
defined types constructed from “sufficiently simple” constructors (constant-expression
constructors.) The proposal aims to

• improve type-safety and portability for code requiring compile time evalua-
tion;

• improve support for systems programming, library building, generic pro-
gramming; and

• remove embarassments from existing Standard Library components.

The suggestions in this proposal directly build on previous work — in particular
Generalized Constant Expressions [DRS06, DR03] and Literals for user-defined
types [Str03] — and discussions at committee meetings — in particular in Kona
(October 2003), Redmond (October 2004), Mont Tremblant (October 2005), and
Berlin (April 2006).

1

N1980=06-0050

1 Problems

Most of the problems addressed by this proposal have been discussed in previous
papers, especially the initial proposal for Generalized Constant Expressions [DR03],
the proposal for Literals for user-defined types [Str03], Generalized initializer
lists [DRS03], Initializer lists [SDR05]. What follows is a brief summary.

1.1 Embarassments with numeric limit constants

The standard numeric_limits class template provides uniform syntax to access
functionality of <limits.h>, but fails to deliver constant expressions. For exam-
ple, the expression numeric_limits<int>::max() while functionally equivalent
to the macro INT_MAX, is not an integral constant. That is due to an unnecessarily
restrictive notion of constant expressions. The result is that macros are preferred in
situations where values need to be known at compile time.

The main thrust of this proposal suggests to allow explicitly identified simple
functions to be used as part of constant expressions.

1.2 Convoluted bitmask types

The Standard Library [ISO03, §17.3.2.1.2] uses the notion of bitmask type de-
scribed as follows:

1 Several types defined in clause 27 are bitmask types. Each bitmask
type can be implemented as an enumerated type that overloads cer-
tain operators, as an integer type, or as a bitset (23.3.5).

2 The bitmask type bitmask can be written:

enum bitmask {
V0 = 1 << 0, V1 = 1 << 1, V2 = 1 << 2, V3 = 1 << 3,

};
static const bitmask C0(V0);
static const bitmask C1(V1);
static const bitmask C2(V2);
static const bitmask C3(V3);
.....
bitmask operator&(bitmask X, bitmask Y)

// For exposition only.
// int_type is an integral type capable of
// representing all values of bitmask

{ return static_cast<bitmask>(
static_cast<int_type>(X) &
static_cast<int_type>(Y)); }

// ...

3 Here, the names C0, C1, etc. represent bitmask elements for this partic-
ular bitmask type. All such elements have distinct values such that,
for any pair Ci and Cj, Ci&Ci is nonzero and Ci&Cj is zero.

Dos Reis & Stroustrup 2

N1980=06-0050

None of the implementation techniques suggested in the C++ standard text is
really satisfactory. We are forced to choose between type safety (“elegance”) and
compile-time evaluation (“efficiency”). For example, if a bitmask type is imple-
mented by an enumeration type with overloads of the appropriate operators, then
the masking operators no longer deliver constant expressions when the inputs are
constant expressions. That is a real efficiency problem for some system programs.
On the other hand, if a bitmask is implemented by an integer type or we rely on
the implicit conversion of enumerations to int, then the masking operators come
for free and are efficient; but the operators do not provide any type guarantees.

This proposal allow efficient implementation of bitmask type, and without loss
of type information.

1.3 Brittle enumerated types

The Standard Library [ISO03, §17.3.2.1.1] uses the notion of enumerated type
defined as follows:

1 Several types defined in clause 27 are enumerated types. Each enu-
merated type may be implemented as an enumeration or as a syn-
onym for an enumeration150).

[with footnote 150]

Such as an integer type, with constant integer values (3.9.1).

2 The enumerated type enumerated can be written:

enum enumerated { V0, V1, V2, V3, ... };

static const enumerated C0(V0);
static const enumerated C1(V1);
static const enumerated C2(V2);
static const enumerated C3(V3);
....

3 Here, the names C0, C1, etc. represent enumerated elements for this
particular enumerated type. All such elements have distinct values.

This definition does not prevent user errors, such as accidental use of implicit
conversions and operations on the underlying integer type (operator|, operator&,
etc.) Our proposal for literals of user-defined types, combined with constant-
expression functions, provide an alternative.

1.4 Unexpected dynamic initialization

In current C++, a variable or static data member declared const can be used in
an integral constant expression, provided it is of integral type and initialized with
constant expression. Similarly, global variables can be statically initialized with

Dos Reis & Stroustrup 3

N1980=06-0050

constant expressions. However, it is possible to be surprised by expressions that
(to someone) “look const” but are not. For example in

struct S {
static const int size;

};

const int limit = 2 * S::size; // dynamic initialization
const int S::size = 256;
const int z = numeric_limits<int>::max(); // dynamic initialization

Here, S::size is indeed intialized with a constant expression, but that initialization
comes “too late” to make S::size a constant expression; consequently limit may
be dynamically initialized. The issue here is that there is no simple, systematic,
and reliable way of requesting that a datum be initialized before its use and the
initializer must be a constant exprssion. That problem is addressed using constant-
expression values (§2.2).

1.5 Complex rules for simple things

The focus of this proposal is to address the issues mentioned in preceding sections.
However, discussions in the Core Working Group at the Berlin meeting (April
2006) concluded that the current rules for integral constant expressions are too
complicated, and source of several Defect Reports. Consequently, a “cleanup”, i.e.
adoption of simpler, more general rules is suggested.

2 Suggestions for C++0x

The generalization we propose are articulated in three steps: First, we introduce
constant-expression functions and use those to generalize constant expressions.
Second, we introduce “literals for user-defined type” based on the notion of constant-
expression constructors. Finally, we describe floating-point constant expressions.

2.1 Constant-expression functions

A function is a constant-expression function if

• it returns a value (i.e., has non-void return type);

• its body consists of a single statement of the form

return expr;

where after substitution of constant expression for the function parameters
in expr, the resulting expression is a constant expression (possibly involving
calls of previously defined constant expression functions); and

• it is declared with the keyword constexpr.

Dos Reis & Stroustrup 4

N1980=06-0050

This is an elaborate way of saying that a constant-expression function is a
named constant expression with parameters, and has been explicitly identified as
such. Expressions having the same properties as expr above are called potential
constant expressions. A constant-expression function cannot be called before it is
defined.

A constant-expression function may be called with non-constant expressions,
in that case there is no requirement that the resulting value be evaluated at compile-
time. Here are some examples

constexpr int square(int x)
{ return x * x; } // fine

constexpr long long_max()
{ return 2147483647; } // fine

constexpr int abs(int x)
{ return x < 0 ? -x : x; } // fine

constexpr void f(int x) // error: return type is void
{ /* ... */ }

constexpr int next(int x)
{ return ++x; } // error: use of increment

constexpr int g(int n) // error: body not just ‘‘return expr’’
{

int r = n;
while (--n > 1) r *= n;
return r;

}

constexpr int twice(int x);
enum { bufsz = twice(256) }; // error: twice() isn’t (yet) defined

constexpr int fac(int x)
{ return x > 2 ? x * fac(x - 1) : 1; } // error: fac() not defined

// before use

template<typename T>
constexpr int bytesize(T t)
{ return sizeof (t); } // fine

float array[square(9)]; // OK -- not C99 VLA
enum { Max = long_max() }; // OK
bitset<abs(-87)> s; // OK
extern const int medium;
const int high = square(medium); // OK -- dynamic initialization
char buf[bytesize(0)]; // OK -- not C99 VLA

Dos Reis & Stroustrup 5

N1980=06-0050

Here “fine” indicates that the function body is simple enough to be evaluated
as a constant expression given constant expression arguments.

Note that constant-expression functions provide what we usually expect from
functional macros combined with usual pass-by-value evaluation (e.g. the argu-
ment to square is used twice, but evaluated only once) and type safety. The
requirement that a constant-expression function can only call previously defined
constant-expression functions ensures that we don’t get into any problems related
to recursion. Experimental implementations of calls to functions in constant ex-
pressions in C++ have long history going back to early versions of CFront.

We (still) prohibit recursion in all its form in constant expressions. That is not
strictly necessary because an implementation limit on recursion depth in constant
expression evaluation would save us from the possibility of the compiler recurs-
ing forever. However, until we see a convincing use case for recursion, we don’t
propose to allow it.

A constant expression function must be defined before its first use. For exam-
ple:

struct S {
constexpr int twice();
constexpr int t();

private:
static constexpr int val; // constexpr variable

};

constexpr int S::val = 7;
constexpr int S::twice() { return val + val; }

constexpr S s = { };
int x1 = s.twice(); // ok
int x2 = s.t(); // error: S::t() not defined

constexpr int ff(); // ok
constexpr int gg(); // ok

int x3 = ff(); // error: ff() not defined

constexpr int ff() { return 1; } // too late
constexpr int gg() { return 2; }

int x4 = gg(); // ok

2.2 Constant-expression data

A constant-expression value is a variable or data member declared with the constexpr
specifier. A constant-expression value must be initialized with a constant expres-
sion or an rvalue constructed by a constant expression constructor with constant
expression arguments. For example:

Dos Reis & Stroustrup 6

N1980=06-0050

const double mass = 9.8;
constexpr double energy = mass * square(56.6); // OK
extern const int side;
constexpr int area = square(side); // error: square(side) is not a

// constant expression

A variable or data member declared with constexpr behaves as if it was de-
clared with const, except that it requires initialization before use and its initializer
must be a constant-expression. Therefore a constexpr variable can always be
used as part of a constant expression.

As for other const variables, storage need not be allocated for a constant-
expression datum, unless its address is taken. For example:

constexpr double x = 9484.748;
const double* p = &x; // the &x forces x into memory

2.3 Constant-expression constructors

The notion of constant-expression data generalizes from data with built-in types
to data with user-defined types. To construct constant-expression values of user-
defined type, one needs the notion of constant-expression constructor: a construc-
tuor

• declared with the constexpr specifier;

• with member-initializer part involving only potential constant-expressions;
and

• and the body of which is empty.

A constant-expression constructor is just like a constant-expression function,
except that since constructors do not return values their body must be empty and
the constant expression evaluation happens in member initializations which must
deliver constants if the inputs are constants. An object of user-defined type con-
structed with a constant-expression constructor and constant expression arguments
is called a user-defined literal. For example:

struct complex {
constexpr complex(double r, double i) : re(r), im(i) { }

constexpr double real() { return re; }
constexpr double imag() { return im; }

private:
double re;
double im;

};

constexpr complex I(0, 1); // OK -- literal complex

Dos Reis & Stroustrup 7

N1980=06-0050

For a constant-expression constructor:

• the definition is checked for consistency with potential constant expression
assumptions. It is an error if the definition does not meet those constraints.
A constant-expression constructor is inline;

• the use with constant expression arguments is guaranteed to yield a user-
defined literal, e.g. an expression with user-defined type that is evaluated at
compile time.

A constant-expression constructor may be invoked with non-constant expres-
sion arguments — the resulting initialization may then be dynamic. This implies
that there is no need to have two versions for constructors that would do the same
thing, e.g. one constructor that accepts only constant expression arguments and
one that may accept non-constant expression arguments. For example:

double x = 1.0;
constexpr complex unit(x, 0); // error: x non-constant
const complex one(x, 0); // OK, ‘‘ordinary const’’ -- dynamic

// initialization

constexpr double xx = I.real(); // OK
complex z(2, 4); // OK -- ordinary variable

When the initializer for an ordinary variable (i.e. not a constexpr) happens
to be a constant, the compiler can choose to do dynamic or static initialization (as
ever).

Declaring a constructor constexpr will help compilers to identify static ini-
tialization and perform appropriate optimizations (like putting literals in read-only
memory.) Note that since “ROM” isn’t a concept of the C++ Standard and what to
put into ROM is often a quite subtle design decision, this proposal simply allows
the programmer to indicate what might be put into ROM (constant-expression data)
rather than trying to specify what actually goes into ROM in a particular implemen-
tation.

Using the value of an object declared constexpr requires the compiler to “re-
member” its value for use in constant expressions (later in the same translation
unit), like is the case for enumerators. For example:

constexpr complex v[] = {
complex(0, 0), complex(1, 1), complex(2, 2)

};
constexpr double x = v[2].real(); // OK

Clearly, a compiler might have to “remember” a lot of values, but then memories
on systems running compilers tend to be correspondingly large these days. Also,
this kind of “compile-time data bloat” can occur only as the result of explicit use
of constexpr for large arrays.

Note also that constexpr values are those that the compiler can evaluate at
translation time. In particular, given

Dos Reis & Stroustrup 8

N1980=06-0050

constexpr int i = 98;

the following declaration is ill-formed

const int p = (int) &i; // ERROR

because the initializer is not an integral constant expression.

2.3.1 Destructor

Can an user-defined literal be destroyed? Yes. The destructor needs to be trivial.
The reason is that a constant-expression is intended to be evaluated by the com-
piler at translation time just like any other literal of built-in type; in particular no
observable side-effect is permitted. Since destructors do not yield values, the only
effect they may have is to modify the state of the (executing) environment. Con-
sequently, to preserve behaviour, we require that the destructor for a user-defined
literal be trivial.

2.3.2 Copy-constructor

When a user-defined literal is copied, e.g. arguments passing in function call, using
a copy constructor and the copy constructor is trivial, then the copy is also a user-
defined literal. For example:

constexpr complex operator+(complex z, complex w)
{
return complex(z.real() + w.real(), z.imag() + w.imag()); // fine

}
constexpr complex I2 = I + I; // OK

struct resource {
int id;
constexpr resource(int i) : id(i) { } // fine
resource(const resource& r) : id(r.id)
{
cout << id << " copied" << endl;

}
};

constexpr resource f(resource d)
{ return d; } // error: copy-constructor not trivial

constexpr resource d = f(9); // error: f(9) not constant expression

2.4 Floating-point constant expressions

Traditionally, evaluation of floating-point constant expression at compile-time is a
torny issue. For uniformity and generality, we suggest to allow constant-expression

Dos Reis & Stroustrup 9

N1980=06-0050

data of floating point types, initialized with any floating-point constant expressions.
That will also increase compatibility with C99 [ISO99, §6.6] which allows

[#5] An expression that evaluates to a constant is required in several
contexts. If a floating expression is evaluated in the translation envi-
ronment, the arithmetic precision and range shall be at least as great
as if the expression were being evaluated in the execution environ-
ment.

For example, in

constexpr complex w = I + complex(3.5, 8.7); // OK

the variable w is as if initialized with complex(3.5, 9.7).

2.5 Changes to the C++ standard

The original proposal [DR03] for generalizing constant expressions did not intro-
duce a new keyword to distinguish constant-expression functions from others. That
proposal relied on the compiler recognizing such functions being simple enough for
use in constant expression. However, during discussions in the Evolution Group
at the Kona meeting (October 2003), the consensus was that we needed syntactic
marker. Given that (our proposed constexpr), a programmer can state that a
function is intended to be used in a constant expression and the compiler can diag-
nose mistakes. We considered this in conjunction with the user-defined literal and
initializer-list proposals [Str03, SDR05]. At the Mont Tremblant meeting (October
2005), the Evolution Group agreed on the new declaration specifier constexpr,
for defining constant-expression functions and constants of user-defined types.

The remaining subsections provide necessary wordings to implement the de-
sign outlined in the previous sections.

2.5.1 Syntax

New keyword Add the new keyword constexpr to “Table 3” [ISO03, §2.11].

New specifier The keyword constexpr is a declaration specifier; modify the
grammar in [ISO03, §7.1] as follows:

1 The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef
constexpr

Dos Reis & Stroustrup 10

N1980=06-0050

We do not propose to make constexpr a storage-class-specifier because it can be
combined with either static or extern or register, much like const. We do
not propose to make constexpr part of type-specifier as a cv-qualifier because it
is not a new distinct type qualifier, and we don’t see a need to distinguish between,
say, a type for literal int, and a separate type for non-literal int. That helps keep
the type rules as simple as possible. Finally, we do not propose to make constexpr
a function-specifier because it can be used to define both functions and variables.
We don’t propose to make constexpr applicable to function arguments because it
would be meaningless for non-inline functions (the argument would be a constant,
but the function wouldn’t know which) and because it would lead to complications
of the overloading rules (can I overload on constexpr-ness? — no).

2.5.2 Semantics

New section Add the following section for the description of constexpr seman-
tics:

7.1.6 The constexpr specifier [decl.constexpr]

1 The constexpr specifier can be applied only to names of objects, func-
tions, and function templates. [Note: Function parameters cannot be
declared constexpr.]

2 An entity declared with constexpr shall be initialized (if it is an object)
or defined (if it is a function) before use.

3 A constexpr specifier used in a function or constructor declaration de-
clares that function or constructor to be a constant-expression function
or a constant-expression constructor, respectively. Such a function or
constructor is implicitly inline.

4 The definition of a constant-expression function shall satisfy the fol-
lowing constraints:

— its return-type shall not be void; and

— its function-body shall be a compound-statement of the form

{ return expression; }

where expression is a potential constant expression (5.19).

A constant-expression function shall not be declared virtual (10.3).

5 The definition of a constant-expression constructor shall satisfy the
following constraints:

— its function-body is an empty compound-statement; and

— its ctor-initializer initializes data members and base class subob-
jects using only constant-expression constructors and potential
constant expressions.

A trivial constructor is also considered a constant-expression con-
structor.

6 A constexpr specifier used in a nonstatic member function declaration
declares that member function to be const. The program is ill-formed

Dos Reis & Stroustrup 11

N1980=06-0050

if the class-type of which that function is a nonstatic member is not a
literal type (3.9).

7 A constexpr specifier used in an object declaration declares it as const.
The object shall be initialized with a potential constant expression.

Paragraph extension Extend paragraph §3.19/10:

10 Arithmetic types (3.9.1), enumeration types, pointers types, and pointer
to member types (3.9.2), and cv-qualified version of these types (3.9.3)
are collectively called scalar types. Scalar types, POD-struct types,
POD-union types (clause 9), arrays of such types and cv-qualified ver-
sions of these types (3.9.3) are collectively called POD types. POD
types and non-POD class-types (clause 9) with at least one constant-
expression constructor (7.1.6) and trivial destructor (12.4) are
collectively called literal types.

New paragraph Add a new paragraph to section §10.1 as follows

7 A class with virtual base class shall not have constant-expression con-
structors or nonstatic constexpr member functions. In particular, a
class with virtual base class cannot be a literal type (3.9).

Paragraph modification Modify paragraph §3.6.2/1 as follows:

1 Objects with static storage duration (3.7.1) shall be zero-initialized
(8.5) before any other initialization takes place. Zero-initialization and
initialization with a constant expression are collectively called static
initialization; all other initialization is dynamic initialization. Objects
of POD literal types (3.9) with static storage duration initialized with
constant expressions (5.19) shall be initialized before any dynamic
initialization takes place. Objects with static storage duration defined
in namespace scope in the same translation unit and dynamically
initialized shall be initialized in the order in which their definition
appears in the translation unit. [Note: 8.5.1 describes the order in
which aggregate members are initialized. The initialization of local
static objects is described in 6.7.]

Paragraph modification Modify paragraph §9.2/4 as follows:

4 A member-declarator can contain a constant-initializer only if it declares
a static member (9.4) of const integral or const enumeration literal
types, see 9.4.2.

2.5.3 Constant expressions revised

Paragraph modification Replace paragraph §5.19/1 with:

1 Certain contexts require expressions that satisfy additional require-
ments as detailed in this subclause. Such expressions are called con-
stant expressions. [Note: Those expressions can be evaluated during
translation.] An expression is a constant expression if and only if it is

Dos Reis & Stroustrup 12

N1980=06-0050

— a literal (2.13), or

— an id-expression that refers to an enumerator, a non-type template
parameter or a non-volatile const variable or non-volatile const
static data member of literal type (3.9) initialized with a constant
expression (8.5), or

— it is a sizeof expression (5.3.3), or

— an invocation of a built-in constant-expression operator (clause
5) or a constant-expression constructor or constant-expression
function (7.1.6), where all arguments are constant expressions
[Note: Overload resolution (13.3) is applied as usual.], or

— an invocation of a trivial copy-constructor of literal type, with a
constant expression argument, or

— *this within a constexpr member function definition [Note: this
is not a constant expression.].

Paragraph modification Modify paragraph §5.19/2 as follows:

2 Other expressions are considered constant-expressions only for the pur-
pose of non-local static object initialization (3.6.2). Such constant
expressions shall evaluate to one of the following:

— a null pointer value (4.10),

— a null member pointer value (4.11),

— an arithmetic constant expression,

— an address constant expression,

— a reference constant expression,

— an address constant expression for a complete object type, plus
or minus an integral constant expression, or

— a pointer to member constant expression.

New paragraph Add a new paragraph to the section §5.19:

7 An expression appearing in a function-body of a constant-expression
function or constant-expression constructor is a potential constant ex-
pression if it is a constant expression when all occurences of function
parameters are replaced by arbitrary constant expressions of the ap-
propriate type.

Paragraph removal Remove paragraph §5.19/3 because it is no longer needed.

2.5.4 Address constant expressions

Paragraph modification Modify paragraph [ISO03, §5.19]:

8 An address constant expression is a pointer to an lvalue designat-
ing an object of static storage duration, a string literal (2.13.4), or a
function. The pointer shall be created explicitly, using the unary &
operator, or implicitly using a non-type template parameter of pointer

Dos Reis & Stroustrup 13

N1980=06-0050

type, or invoking constant-expression constructors or constant-
expression functions with constant expression arguments, or us-
ing an expression of array (4.2) or function (4.3) type. The subscript-
ing operator [] and the class member access . and -> operators, the &
and * unary operators, and pointer casts (except dynamic_casts, 5.2.7)
can be used in the creation of an address constant expression, but
the value of an object shall not be accessed by the use of these oper-
ators. If the subscripting operator is used, one of its operands shall
be an integral constant expression. An expression that designates the
address of a subobject of a non-POD non-literal class object (clause
9) is not an address constant expression (12.7). Function calls shall
not be used in an address constant expression, even if the function
is inline and has a reference return type unless that function is a
constant-expression function invoked with constant expression
arguments.

Note that while the result of calling a constexpr member function with constant
expression arguments (including the implied object) is a constant expression, the
value of this is not considered an address constant expression within the body of
the constexpr function.

2.5.5 Reference constant expressions

Paragraph modification Modify paragraph [ISO03, §5.19]:

9 A reference constant expression is an lvalue designating an object of
static storage duration, a non-type template parameter of reference
type, or invoking explicitly or implicitly constant-expression con-
structors or functions with constant expression arguments, or a
function. The subscripting operator [], the class member access .
and -> operators, the & and * unary operators, and reference casts
(except those invoking non-constant expression user-defined con-
version functions (12.3.2) and except dynamic_casts (5.2.7)) can be
used in the creation of a reference constant expression, but the value
of an object shall not be accessed by the use of these operators. If
the subscripting operator is used, one of its operands shall be an in-
tegral constant expression. An lvalue expression that designates a
member or base class of a non-POD non-literal class object (clause
9) is not a reference constant expression (12.7). Function calls shall
not be used in a reference constant expression, even if the function
is inline and has a reference return type unless that function is a
constant-expression function invoked with constant expression
arguments.

2.5.6 Other changes

New paragraphs Add new paragraphs to clause 5:

11 A constant-expression operator is one of

— the built-in unary operators *, +, -, &, !, ~,

— the cast operators static_cast, const_cast, reinterpret_cast,

— the subscription operator [],

— the member access operator,

Dos Reis & Stroustrup 14

N1980=06-0050

— the built-in binary operators *, /, %, +, -, <<, >>, <, >, <=, >=, ==,
!=, &, ^, |, &&, ||,

— the ternary conditional operator ?:.

[Note: The comma operator is not a constant-expression operator.]

The member access operator yields a constant expression if and only
if the access is to a non-mutable data member with non-volatile literal
type, and the containing object is the result of a constant expression.

12 Constant-expression operators yield constant expressions only where
their operands are themselves constant expressions or literal types.
More stringent requirements are placed on each individual operation
as described below.

Paragraph modification Modify paragraph §3.2/2 as follows:

2 An expression is potentially evaluated unless it appears where an
integral a constant expression is required (see 5.19), is the operand of
the sizeof operator (5.3.3),

The rationale for this modification is to allow constant expressions of literal types
too.

Paragraph modification Modify paragraph §3.2/2 as follows:

5 ... except that a name to a const object with internal or no linkage
if the object has the same integral or enumeration literal type in all
definitions of D, and the object is initialized with a constant expression
(5.19),

Paragraph modification Modify paragraph §6.7/4 as follows:

4 A local object of POD literal type (3.9) with static storage duration
initialized with a constant-expression is initialized before its block is first
entered.

Paragraph modification Modify paragraph §9/4 as follows:

4 If a static data member is of const integral or const enumeration lit-
eral type, its declaration in the class definition can specify a constant-
expression which shall be an integral a literal constant expression (5.19).
In that case the member can appear in integral constant expressions.
The member shall still be defined in a namespace scope if it is used in
the program and the namespace scope definition shall not contain an
initializer.

Paragraph modification Modify paragraph §14.6.2.3/1 as follows:

2 An identifier is value-dependent if it is:

— a name declared with a dependent type,

— the name of a non-type template parameter,

Dos Reis & Stroustrup 15

N1980=06-0050

— a constant with integral or enumeration literal type and is ini-
tialized with an expression that is value-dependent.

....

3 Related proposals

3.1 Standard Library changes

We plan to propose changes to the standard library to take advantage of constexpr.
Obvious candidates are numeric_limits, bitmask, and enumerated as descibed
in §1 and initializer_list.

3.2 Non-type template parameter

The suggestion of extending non-type template parameter type to literal types will
be subject of an independent proposal.

3.3 Generalizing PODs

There is a suggestion to extend the notion of POD. That suggestion is independent,
in scope, of this constant expression proposal. The definition of “literal type” as
suggested in this paper may be a starting point for that proposal.

4 Acknowledgments

Thanks to the committee members who provided feedback, suggestions for im-
provement, as expressed in face-to-face meetings or on the standard reflectors.

References

[DR03] Gabriel Dos Reis. Generalized Constant Expressions. Technical
Report N1521=03-0104, ISO/IEC JTC1/SC22/WG21, http://www.
open-std.org/JTC1/SC22/WG21/docs/papers/2003/n1521.pdf,
September 2003.

[DRS03] Gabriel Dos Reis and Bjarne Stroustrup. Generalized initializer
list. Technical Report N1509=03-0092, ISO/IEC JTC1/SC22/WG21,
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2003/
n1509.pdf, September 2003.

[DRS06] Gabriel Dos Reis and Bjarne Stroustrup. Generalized Constant Ex-
pressions – Revision 2. Technical Report N1972=06-0042, ISO/IEC
SC22/JTC1/WG21, February 2006. Supersedes [DR03].

Dos Reis & Stroustrup 16

N1980=06-0050

[ISO99] International Organization for Standards. International Standard
ISO/IEC 9899. Programming Languages — C, 1999.

[ISO03] International Organization for Standards. International Standard
ISO/IEC 14882. Programming Languages — C++, 2nd edition, 2003.

[SDR05] Bjarne Stroustrup and Gabriel Dos Reis. Initializer lists. Technical
Report N1919=05-0179, ISO/IEC JTC1/SC22/WG21, http://www.
open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1919.pdf,
December 2005.

[Str03] Bjarne Stroustrup. Literals for user-defined types. Technical Re-
port N1511=03-0094, ISO/IEC JTC1/SC22/WG21, http://www.
open-std.org/JTC1/SC22/WG21/docs/papers/2003/n1511.pdf,
September 2003.

Dos Reis & Stroustrup 17

