
Memory Model for C++:
Status update

Hans-J. Boehm
HP Labs

Hans.Boehm@hp.com
WG21/N1911=J16/05-0171

2005-10-20

With help from Bill Pugh, Doug Lea, Peter
Dimov, Alexander Terekhov, ...

Goals of this talk

Outline where we have been.
What are the difficulties?
Tradeoffs for atomic operations

& why those are fundamental
Current status

A note on assumptions

In spite of N1834, we concentrate on threads.
I believe these reflect the most common
approach to concurrency, though there are
others:

Message passing (e.g. MPI): Different
issues.
Partially shared address space:

Sometimes useful, partially addressed.
Pointers and virtual functions broken.
Share many of the same issues.

Approach, from last time:
(still a bit tentative)
"Pthreads-like" memory model.

Data race: A store to a memory location
concurrent with another load or store to a
memory location.
Data races have undefined semantics.
Otherwise: Sequential consistency.

Careful and restrictive definition of "data
race" and "memory location".

Only bit-fields share a "memory location."
Data races defined for seq. consistent exec.

Reasons for this approach

We can get away with it, kind of.
No type-safety required.

Remain consistent with current practice.
Java-like approach disallows some compiler
optimizations:

Register "rematerialization".
Code hoisting (sometimes).

Requires memory barriers on object
construction to ensure vtable visibility.
Avoid (?) complex causality treatment.
Avoid atomicity constraints.

The Problem: Atomic Operations
Library.

Some low level code requires data races for
performance.
Common example: "double-checked locking"
if (!x_initialized) {

lock();
if (!x_initialized) x = ...;
x_initialized = true;
unlock();

}
... x ...
Incorrect as is: Data race!

Double-checked locking:
Why it has to be illegal as is.

Compiler/hardware may reorder
if (!x_initialized) {

lock(); // Not real syntax
if (!x_initialized) x = ...;
x_initialized = true;
unlock();

}
... x ...

E.g., compiler may load x early after
discovering that it misses cache.
Some architectures allow reordering.

The solution: atomic operations

Loads and stores of x_initialized must be
done specially:

Tell compiler (and programmer) that a race
is involved.
Ensure atomicity.
Specify ordering constraints.

Use either a special volatile variant, or
calls to a standard atomic operations library.

We are concentrating on the library for now.

Double-checked locking:
Correct, with atomic operations

Use atomic operations (not real syntax):
if (!load_acquire(x_initialized)) {

lock();
if (!x_initialized) x = ...;
store_release(x_initialized, true);
unlock();

}
... x ...

Store_release ensures that preceding stores
are visible to a load_acquire reading variable
in another thread.

A controversial part: Memory
ordering constraints:

Different hardware can cheaply enforce
different types of ordering constraints.

Argues for many different supported variants:
E.g. order load with respect to later operations
"control-dependent" on it.

But:
These often don't make sense at source level.
Sometimes they constrain separate compilation.
Synchronization operations that allow
reordering complicate semantics.
More variety complicates semantics more.

Atomic operation semantics

Thread 1:
store_unordered(x, 1);
r1 = load_unordered(y);
if (r1 == 0) z = 17;

Thread 2:
store_unordered(y, 1);
r2 = load_unordered(x);
if (r2 == 0) z = 42;

Variables x, y, and z initially 0

Does this have a data race?
Simultaneous accesses through atomics don't count.
No race on z under sequentially consistent interpretation.
But simultaneous accesses are really possible.
This must have undefined semantics in order to preserve the
compilers optimization ability.

Current approach

Definition of data race assumes
Sequential consistency for ordinary memory
accesses.
Java-like semantics for atomic operations.
(this is technically tricky.)

Causality

Problem: This brings back the complexity of
Java memory model.

Solutions under consideration:
Simply say "no speculation on atomics" (vague)
Try for simpler model that overconstrains optimization of
atomics.

Thread 1:
store(x, load(y));
z[x] = 17;

Thread 2:
store(y, load(x));
z[42] = 23;

Initially x = y = 0

Issues related to atomics:

Fine control vs. ease of use?
How many ordering constraints?
Do we want higher level facilities, like Lawrence
Crowl's proposal?

In addition to or instead of lower level package?
Templatized w.r.t. location type?

atomic<T> vs atomic_ptr or both?
Operations parameterized w.r.t. ordering?

load_acquire vs. load<acquire> vs. load(acquire, ...)
Emulated operations & feature tests.

Don't have compare-and-swap everywhere.

Current status

Web page at
http://www.hpl.hp.com/personal/Hans_Boehm/c++mm

Includes (still informal) proposal
Needs further scrutiny
Very preliminary atomic operations library
interface

Want more C compatibility.
Would like opinions on:

Atomics interface.
Required precision of atomics memory model.

