
Document Number: N1713=04-0153
Date: October 20, 2004

Reply to: Pete Becker
Dinkumware, Ltd.
petebecker@acm.org

Proposed Resolution to TR1 Issues 3.12, 3.14, and 3.15

This paper proposes a resolution to TR1 issues 3.12, 3.14, and 3.15. It recommends an extensive (although largely
mechanical) restructuring of the type-traits portion of TR1, so it contains a rewritten version of that clause rather than a
series of edits.

Issue 3.14 is about the way that the various traits are described. The descriptions consist of a code snippet followed
by text that describes the required behavior. In most cases this combination ends up overspecifying the template. For
example:

template <class T> struct remove_reference{

typedef T type;

};

template <class T> struct remove_reference <T&>{

typedef T type;

};

1 type : defined to be a type that is the same as T, except any reference qualifier has been removed.

The paragraph marked “1” is the specification for the template remove_reference; the code snippet above it is one
way to implement it.

The proposed resolution moves the definitions of the type traits into tables which list the name of the trait and its
argument list in one column and the required behavior in another column. All of the templates in any table meet the
requirements for only one of UnaryTypeTraits, BinaryTypeTraits, or TransformationTraits.

The proposed resolution also rewrites the definitions of UnaryTypeTrait, BinaryTypeTrait, and TransformationTrait to
make them applicable to the traits that we added

Issue 3.12 is about the use of true_type, false_type, and other instantiations of the template integral_constant.
Many of the type traits templates specify a nested type named type which is an instance of integral_constant, and
also specify a conversion to that type. Issue 3.12 says that each such traits type should inherit from the appropriate
instance of integral_constant. The revised text in this paper makes that change.

Issue 3.15 recommends changing a "Notes" entry in the requirements for has_virtual_destructor into normative
text (4.9/6). This change also helps simplify several other descriptions by allowing the header for the third column in
table 4 to be "Preconditions", which in turn means the various preconditions in that column don’t have to be separately
labeled as such.

Note: I haven’t fixed bad page breaks or bad line breaks. That comes later.

My thanks to John Maddock for reading and commenting on several drafts of this proposal.

2

4 Metaprogramming and type traits [tr.meta]

1 This clause describes components used by C++ programs, particularly in templates, to: support the widest possible range
of types, optimise template code usage, detect type related user errors, and perform type inference and transformation
at compile time.

2 The following subclauses describe type traits requirements, unary type traits, traits that describe relationships between
types, and traits that perform transformations on types, as summarized in Table 1.

Table 1: Type traits library summary
Subclause Header(s)

4.1 Requirements
4.5 Unary type traits <type_traits>
4.6 Relationships between types <type_traits>
4.7 Transformations between types <type_traits>

4.1 Requirements [tr.meta.rqmts]

A UnaryTypeTrait is a template that describes a property of a type. It shall be a class template that takes one template
type argument and, optionally, additional arguments that help define the property being described. It shall be Default-
Constructible and derived, directly or indirectly, from an instance of the template integral_constant (4.3), with
the arguments to the template integral_constant determined by the requirements for the particular property being
described.

A BinaryTypeTrait is a template that describes a relationship between two types. It shall be a class template that takes two
template type arguments and, optionally, additional arguments that help define the relationship being described. It shall
be DefaultConstructible and derived, directly or indirectly, from an instance of the template integral_constant (4.3),
with the arguments to the template integral_constant determined by the requirements for the particular relationship
being described.

A TransformationTypeTrait is a template that modifies a property of a type. It shall be a class template that takes one
template type argument and, optionally, additional arguments that help define the modification. It shall define a nested
type named type which shall be a synonym for the modified type.

4.2 Header <type_traits> synopsis [tr.meta.type.synop]

namespace tr1{

/ / [4.3] helper class:

3

4 4. METAPROGRAMMING AND TYPE TRAITS

template <class T, T v> struct integral_constant;

typedef integral_constant <bool , true > true_type;

typedef integral_constant <bool , false > false_type;

/ / [4.5.1] primary type categories:
template <class T> struct is_void;

template <class T> struct is_integral;

template <class T> struct is_floating_point;

template <class T> struct is_array;

template <class T> struct is_pointer;

template <class T> struct is_reference;

template <class T> struct is_member_object_pointer;

template <class T> struct is_member_function_pointer;

template <class T> struct is_enum;

template <class T> struct is_union;

template <class T> struct is_class;

template <class T> struct is_function;

/ / [4.5.2] composite type categories:
template <class T> struct is_arithmetic;

template <class T> struct is_fundamental;

template <class T> struct is_object;

template <class T> struct is_scalar;

template <class T> struct is_compound;

template <class T> struct is_member_pointer;

/ / [4.5.3] type properties:
template <class T> struct is_const;

template <class T> struct is_volatile;

template <class T> struct is_pod;

template <class T> struct is_empty;

template <class T> struct is_polymorphic;

template <class T> struct is_abstract;

template <class T> struct has_trivial_constructor;

template <class T> struct has_trivial_copy;

template <class T> struct has_trivial_assign;

template <class T> struct has_trivial_destructor;

template <class T> struct has_nothrow_constructor;

template <class T> struct has_nothrow_copy;

template <class T> struct has_nothrow_assign;

template <class T> struct has_virtual_destructor;

template <class T> struct is_signed;

template <class T> struct is_unsigned;

template <class T> struct alignment_of;

template <class T> struct rank;

template <class T, unsigned I = 0> struct extent;

/ / [4.6] type relations:
template <class T, class U> struct is_same;

template <class From , class To > struct is_convertible;

4.3. HELPER CLASSES 5

template <class Base , class Derived > struct is_base_of;

/ / [4.7.1] const-volatile modifications:
template <class T> struct remove_const;

template <class T> struct remove_volatile;

template <class T> struct remove_cv;

template <class T> struct add_const;

template <class T> struct add_volatile;

template <class T> struct add_cv;

/ / [4.7.2] reference modifications:
template <class T> struct remove_reference;

template <class T> struct add_reference;

/ / [4.7.3] array modifications:
template <class T> struct remove_extent;

template <class T> struct remove_all_extents;

/ / [4.7.4] pointer modifications:
template <class T> struct remove_pointer;

template <class T> struct add_pointer;

/ / [4.8] other transformations:
template <std:: size_t Len , std:: size_t Align > struct aligned_storage;

} / / namespace tr1

4.3 Helper classes [tr.meta.help]

template <class T, T v>

struct integral_constant

{

static const T value = v;

typedef T value_type;

typedef integral_constant <T,v> type;

};

typedef integral_constant <bool , true > true_type;

typedef integral_constant <bool , false > false_type;

1 The class template integral_constant and its associated typedefs true_type and false_type are used as base
classes to define the interface for various type traits.

4.4 General Requirements [tr.meta.requirements]

1 Tables 2, 3, 4, and 6 define type predicates. Each type predicate pred<T> shall be a UnaryTypeTrait (4.1), derived
directly or indirectly from true_type if the corresponding condition is true, otherwise from false_type. Each type
predicate pred<T, U> shall be a BinaryTypeTrait (4.1), derived directly or indirectly from true_type if the corre-
sponding condition is true, otherwise from false_type.

2 Table 5 defines various type queries. Each type query shall be a UnaryTypeTrait (4.1), derived directly or indirectly
from integral_constant<std::size_t, value>, where value is the value of the property being queried.

6 4. METAPROGRAMMING AND TYPE TRAITS

3 Tables 7, 8, 9, and 10 define type transformations. Each transformation shall be a TransformationTrait (4.1).

4 Table 11 defines a template that can be instantiated to define a type with a specific alignment and size.

4.5 Unary Type Traits [tr.meta.unary]

1 This sub-clause contains templates that may be used to query the properties of a type at compile time.

2 For all of the class templates X declared in this clause, instantiating that template with a template-argument that is a class
template specialization may result in the implicit instantiation of the template argument if and only if the semantics of X
require that the argument must be a complete type.

4.5.1 Primary Type Categories [tr.meta.unary.cat]

1 The primary type categories correspond to the descriptions given in section [basic.types] of the C++ standard.

2 For any given type T, exactly one of the primary type categories shall have its member value evaluate to true.

3 For any given type T, the result of applying one of these templates to T, and to cv-qualified T shall yield the same result.

4 The behavior of a program that adds specializations for any of the class templates defined in this clause is undefined.

Table 2: Primary Type Category Predicates

Template Condition Comments
template <class T>
struct is_void;

T is void or a cv-qualified
void

template <class T>
struct is_integral;

T is an integral type
([basic.fundamental])

template <class T>
struct is_floating_point;

T is a floating point type
([basic.fundamental])

template <class T>
struct is_array;

T is an array type
([basic.compound])

[Note: class template array,
described in clause ?? of this
technical report, is not an
array type. —end note]

template <class T>
struct is_pointer;

T is a pointer type
([basic.compound])

Pointer type here includes all
function pointer types but not
pointers to members or
member functions.

template <class T>
struct is_reference;

T is a reference type
([basic.fundamental])

Includes reference to a
function type.

template <class T>
struct is_member_object_pointer;

T is a pointer to data member

template <class T>
struct is_member_function_pointer;

T is a pointer to member
function

template <class T>
struct is_enum;

T is an enumeration type
([basic.compound])

template <class T>
struct is_union;

T is a union type
([basic.compound])

4.5. UNARY TYPE TRAITS 7

template <class T>
struct is_class;

T is a class type
([basic.compound]) but not a
union type

template <class T>
struct is_function;

T is a function type
([basic.compound])

4.5.2 Composite type traits [tr.meta.unary.comp]

1 These templates provide convenient compositions of the primary type categories, corresponding to the descriptions given
in section [basic.types].

2 For any given type T, the result of applying one of these templates to T, and to cv-qualified T shall yield the same result.

3 The behavior of a program that adds specializations for any of the class templates defined in this clause is undefined.

Table 3: Composite Type Category Predicates

Template Condition Comments
template <class T>
struct is_arithmetic;

T is an arithmetic type
([basic.fundamental])

template <class T>
struct is_fundamental;

T is a fundamental type
([basic.fundamental])

template <class T>
struct is_object;

T is an object type
([basic.types])

template <class T>
struct is_scalar;

T is a scalar type
([basic.types])

template <class T>
struct is_compound;

T is a compound type
([basic.compound])

template <class T>
struct is_member_pointer;

T is a pointer to a member or
member function

4.5.3 Type properties [tr.meta.unary.prop]

1 These templates provide access to some of the more important properties of types; they reveal information which is
available to the compiler, but which would not otherwise be detectable in C++ code.

2 It is unspecified whether the library defines any full or partial specialisations of any of these templates. A program may
specialise any of these templates on a user-defined type, provided the semantics of the specialisation match those given
for the template in its description.

Table 4: Type Property Predicates

Template Condition Preconditions
template <class T>
struct is_const;

T is const-qualified
([basic.qualifier])

8 4. METAPROGRAMMING AND TYPE TRAITS

template <class T>
struct is_volatile;

T is volatile-qualified
([basic.qualifier])

template <class T>
struct is_pod;

T is a POD type ([basic.type]) T shall be a complete type.

template <class T>
struct is_empty;

T is an empty class (10) T shall be a complete type.

template <class T>
struct is_polymorphic;

T is a polymorphic class
(10.3)

T shall be a complete type.

template <class T>
struct is_abstract;

T is an abstract class (10.4) T shall be a complete type.

template <class T>
struct has_trivial_constructor;

The default constructor for T
is trivial (12.1)

T shall be a complete type.

template <class T>
struct has_trivial_copy;

The copy constructor for T is
trivial (12.8)

T shall be a complete type.

template <class T>
struct has_trivial_assign;

The assignment operator for
T is trivial (12.8)

T shall be a complete type.

template <class T>
struct has_trivial_destructor;

The destructor for T is trivial
(12.4)

T shall be a complete type.

template <class T>
struct has_nothrow_constructor;

The default constructor for T
has an empty exception
specification or can otherwise
be deduced never to throw an
exception

T shall be a complete type.

template <class T>
struct has_nothrow_copy;

The copy constructor for T
has an empty exception
specification or can otherwise
be deduced never to throw an
exception

T shall be a complete type.

template <class T>
struct has_nothrow_assign;

The assignment operator for
T has an empty exception
specification or can otherwise
be deduced never to throw an
exception

T shall be a complete type.

template <class T>
struct has_virtual_destructor;

T has a virtual destructor
(12.4)

T shall be a complete type.

template <class T>
struct is_signed;

T is a signed integral type
([basic.fundamental])

template <class T>
struct is_unsigned;

T is an unsigned integral type
([basic.fundamental])

Table 5: Type Property Queries

Template value

4.6. RELATIONSHIPS BETWEEN TYPES 9

template <class T>
struct alignment_of;

An integer value representing the number of bytes of the alignment of objects of
type T; an object of type T may be allocated at an address that is a multiple of its
alignment ([basic.types]).
Precondition: T shall be a complete type.

template <class T>
struct rank;

An integer value representing the rank of objects of type T (8.3.4). [Note: The
term “rank” here is used to describe the number of dimensions of an array type.
—end note]

template <class T,
unsigned I = 0>
struct extent;

An integer value representing the extent (dimension) of the I’th bound of objects
of type T (8.3.4). If the type T is not an array type, has rank of less than I, or if I
== 0 and T is of type “array of unknown bound of U,” then value shall evaluate
to zero; otherwise value shall evaluate to the number of elements in the I’th
array bound of T. [Note: The term “extent” here is used to describe the number
of elements in an array type —end note]

3 [Example:

/ / the following assertions hold:
assert(rank <int >:: value == 0);

assert(rank <int[2]>:: value == 1);

assert(rank <int [][4] >:: value == 2);

—end example]

4 [Example:

/ / the following assertions hold:
assert(extent <int >:: value == 0);

assert(extent <int[2]>:: value == 2);

assert(extent <int [2][4] >:: value == 2);

assert(extent <int [][4] >:: value == 0);

assert ((extent <int , 1 >:: value) == 0);

assert ((extent <int[2] , 1>:: value) == 0);

assert ((extent <int [2][4] , 1 >:: value) == 4);

assert ((extent <int [][4] , 1 >:: value) == 4);

—end example]

4.6 Relationships between types [tr.meta.rel]

Table 6: Type Relationship Predicates

Template Condition Comments
template <class T, class U>
struct is_same;

T and U name the same type

10 4. METAPROGRAMMING AND TYPE TRAITS

template <class From, class To>
struct is_convertible;

An imaginary lvalue of type
From is implicitly convertible
to type To (4.0)

Special conversions involving
string-literals and
null-pointer constants are not
considered (4.2, 4.10 and
4.11). No function-parameter
adjustments (8.3.5) are made
to type To when determining
whether From is convertible
to To; this implies that if type
To is a function type or an
array type, then the condition
is false.
See below.

template <class Base, class Derived>
struct is_base_of;

Base is a base class of
Derived ([class.derived]) or
Base and Derived name the
same type

Preconditions: Base and
Derived shall be complete
types.

1 The expression is_convertible<From,To>::value is ill-formed if:

— Type From is a void or incomplete type ([basic.types]).

— Type To is an incomplete, void or abstract type ([basic.types]).

— The conversion is ambiguous, for example if type From has multiple base classes of type To ([class.member.lookup]).

— Type To is of class type and the conversion would invoke a non-public constructor of To ([class.access] and
[class.conv.ctor]).

— Type From is of class type and the conversion would invoke a non-public conversion operator of From
([class.access] and [class.conv.fct]).

4.7 Transformations between types [tr.meta.trans]

1 This sub-clause contains templates that may be used to transform one type to another following some predefined rule.

2 Each of the templates in this header shall be a TransformationTrait (4.1).

4.7.1 Const-volatile modifications [tr.meta.trans.cv]

Table 7: Const-volatile modifications

Template Comments
template <class T>
struct remove_const;

The member typedef type shall be the same as T except that any top level
const-qualifier has been removed. [Example: remove_const<const volatile
int>::type evaluates to volatile int, whereas remove_const<const
int*> is const int*. —end example]

4.7. TRANSFORMATIONS BETWEEN TYPES 11

template <class T>
struct remove_volatile;

The member typedef type shall be the same as T except that any top level
volatile-qualifier has been removed. [Example: remove_const<const
volatile int>::type evaluates to const int, whereas
remove_const<volatile int*> is volatile int*. —end example]

template <class T>
struct remove_cv;

The member typedef type shall be the same as T except that any top level
cv-qualifier has been removed. [Example: remove_cv<const volatile
int>::type evaluates to int, where as remove_cv<const volatile int*>
is const volatile int*. —end example]

template <class T>
struct add_const;

If T is a reference, function, or top level const-qualified type, then type shall be
the same type as T, otherwise T const.

template <class T>
struct add_volatile;

If T is a reference, function, or top level volatile-qualified type, then type shall
be the same type as T, otherwise T volatile.

template <class T>
struct add_cv;

The member typedef type shall be the same type as
add_const<add_volatile<T>::type>::type.

4.7.2 Reference modifications [tr.meta.trans.ref]

Table 8: Reference modifications

Template Comments
template <class T>
struct remove_reference;

The member typedef type shall be the same as T, except any reference qualifier
has been removed.

template <class T>
struct add_reference;

If T is a reference type, then the member typedef type shall be T, otherwise T& .

4.7.3 Array modifications [tr.meta.trans.arr]

Table 9: Array modifications

Template Comments
template <class T>
struct remove_extent;

If T is “array of U”, the member typedef type shall be U, otherwise T. For
multidimensional arrays, only the first array dimension is removed. For a type
“array of const U”, the resulting type is const U.

template <class T>
struct remove_all_extents;

If T is “multi-dimensional array of U”, the resulting member typedef type is U,
otherwise T.

1 [Example

/ / the following assertions hold:
assert ((is_same <remove_extent <int >::type , int >:: value));

assert ((is_same <remove_extent <int[2]>::type , int >:: value));

assert ((is_same <remove_extent <int [2][3] >::type , int[3]>:: value));

assert ((is_same <remove_extent <int [][3] >::type , int[3]>:: value));

12 4. METAPROGRAMMING AND TYPE TRAITS

—end example]

2 [Example

/ / the following assertions hold:
assert ((is_same <remove_all_extents <int >::type , int >:: value));

assert ((is_same <remove_all_extents <int[2]>::type , int >:: value));

assert ((is_same <remove_all_extents <int [2][3] >::type , int >:: value));

assert ((is_same <remove_all_extents <int [][3] >::type , int >:: value));

—end example]

4.7.4 Pointer modifications [tr.meta.trans.ptr]

Table 10: Pointer modifications

Template Comments
template <class T>
struct remove_pointer;

The member typedef type shall be the same as T, except any top level
indirection has been removed. Note: pointers to members are left unchanged by
remove_pointer.

template <class T>
struct add_pointer;

The member typedef type shall be the same as
remove_reference<T>::type* if T is a reference type, otherwise T*.

4.8 Other transformations [tr.meta.trans.other]

Table 11: Other transformations

Template Comments
template <std::size_t Len,
std::size_t Align>
struct aligned_storage;

The member typedef type shall be a POD type with size Len and alignment
Align, suitable for use as uninitialized storage for any object of a type whose size
is Len and whose alignment is Align.

4.9 Implementation requirements [tr.meta.req]

1 The behaviour of all the class templates defined in <type_traits> shall conform to the specifications given, except
where noted below.

2 [Note: The latitude granted to implementers in this clause is temporary, and is expected to be removed in future revisions
of this document. —end note]

3 If there is no means by which the implementation can differentiate between class and union types, then the class tem-
plates is_class and is_union need not be provided.

4 If there is no means by which the implementation can detect polymorphic types, then the class template is_polymor-
phic need not be provided.

5 If there is no means by which the implementation can detect abstract types, then the class template is_abstract need
not be provided.

4.9. IMPLEMENTATION REQUIREMENTS 13

6 If there is no means by which an implementation can determine whether a type T has a virtual destructor, e.g. a pure
library implementation with no compiler support, then has_virtual_destructor<T> shall be derived, directly or
indirectly, from false_type (4.1).

7 It is unspecified under what circumstances, if any, is_empty<T>::value evaluates to true.

8 It is unspecified under what circumstances, if any, is_pod<T>::value evaluates to true, except that, for all types T:

is_pod <T>:: value == is_pod <remove_extent <T>::type >:: value

is_pod <T>:: value == is_pod <T const volatile >:: value

is_pod <T>:: value >= (is_scalar <T>:: value || is_void <T>:: value)

9 It is unspecified under what circumstances, if any, has_trivial_*<T>::value evaluates to true, except that:

has_trivial_*<T>:: value ==

has_trivial_*<remove_extent <T>::type >:: value

has_trivial_*<T>:: value >=

is_pod <T>:: value

10 It is unspecified under what circumstances, if any, has_nothrow_*<T>::value evaluates to true.

11 There are trait templates whose semantics do not require their argument(s) to be completely defined, nor does such
completeness in any way affect the exact definition of the traits class template specializations. However, in the absence
of compiler support these traits cannot be implemented without causing implicit instantiation of their arguments; in par-
ticular: is_class, is_enum, and is_scalar. For these templates, it is unspecified whether their template argument(s)
are implicitly instantiated when the traits class is itself instantiated.

	4 Metaprogramming and type traits
	4.1 Requirements
	4.2 Header <type_traits> synopsis
	4.3 Helper classes
	4.4 General Requirements
	4.5 Unary Type Traits
	4.5.1 Primary Type Categories
	4.5.2 Composite type traits
	4.5.3 Type properties

	4.6 Relationships between types
	4.7 Transformations between types
	4.7.1 Const-volatile modifications
	4.7.2 Reference modifications
	4.7.3 Array modifications
	4.7.4 Pointer modifications

	4.8 Other transformations
	4.9 Implementation requirements

