
Document Number: WG21/N1680=J16/04-0120
Date: 10 September 2004

Reply to: Andrei Alexandrescu
andrei@metalanguage.com
2216 NE 46th St. Apt. A
Seattle WA 98105 USA

Memory model for multithreaded C++

Andrei Alexandrescu Hans Boehm Kevlin Henney

Doug Lea Bill Pugh

Abstract

The C++ Standard defines single-threaded program execution. Fun-
damentally, multithreaded execution requires a much more refined mem-
ory and execution model. C++ threading libraries are in the awkward sit-
uation of specifying (implicitly or explicitly) an extended memory model
for C++ in order to specify program execution. We propose integrating
a memory model suitable for multithreaded execution in the C++ Stan-
dard. On top of that model, we propose a standard threading library.

1 Introduction

Many of today’s applications make use of multithreaded execution. We expect
such use to grow as the increased use of hardware multithreading (a.k.a. “hy-
perthreading”) and multi-core processors will force or entice more and more
applications to become multithreaded. C++ is commonly used as part of mul-
tithreaded applications, sometimes with either direct calls into an OS-provided
threading library (e.g. POSIX threads (pthreads) [3] or Win32 threads) or with
the aid of an intervening layer that provides a platform-neutral interface (e.g.
Boost Threads). However, concurrent programming is inherently diverse, and
includes high-performance parallel programming, asynchronous task processing,
message-based and event-based systems, non-blocking, lock-free and optimistic
data structures, transactional approaches, and so on.

Unfortunately, programming multithreaded applications of any kind in C++

remains a black art. Properties critical for reliable, efficient, and correct multi-
threaded execution are left unspecified. The Win32 threading model is notori-
ously underspecified (and by extension, any portable layer that relies on it, such
as Boost Threads). POSIX threads are more rigorously defined, but pthreads
only specify a C binding; C++ programs using pthreads enjoy vicarious cor-
rectness at best. The C++ Standard specifies program execution in terms of
observable behavior, which in turn describes sequential execution on an implic-
itly single-threaded abstract machine. Thus, currently, many questions that
programmers have about how to predict and control multithreaded code simply

1



do not have answers. Superstition, myths, bad advice, and “hey, it worked for
me” stories are rampant.

Absent a clearly defined memory model as a common ground between the
compiler, the hardware, the threading library, and the programmer, multi-
threaded C++ code is fundamentally at odds with compiler and processor-
level optimizations [4]. Even relatively simple uses can fail unexpectedly due
to unforeseen compiler optimizations. These optimizations are safe in a single-
threaded context, but not with multiple threads. Additionally, the specification
does not address at all the interactions of memory operations with atomic up-
date operations or constructs such as locks built out of them. (The pthreads
specification does not help much here, since locking semantics are not fully
integrated with the semantics of other memory operations.)

These problems can be solved without introducing additional keywords or
syntactic constructs. The main plan of attack is:

1. Specification of an abstract memory model describing the interactions
between threads and memory.

2. Application of this model to existing aspects of the C++ specification to
replace the current implicitly sequential semantics. This will entail new
constraints on how compilers can emit and optimize code. In particular,
this will entail a reworking of the specification of volatile to provide
useful multithreaded semantics.

3. Introduction of a small number of standard library classes providing stan-
dardized access to atomic update operations (such as compare_and_set).
These classes will have multithreaded semantics integrated with the above
specifications for other memory operations. Thus, compilers will need to
treat these as intrinsics. These operations form the low-level basis for
modern multithreaded synchronization constructs such as locks, and are
also required in the construction of efficient non-blocking data structures.

4. Definition of a standard thread library that provides similar functionality
to pthreads and Win32 threads, but meshes with the rest of the C++

standard.

This is an ambitious proposal, and the current draft represents only the first
step of a long process. In the remainder of this draft, we briefly describe the
fundamental issues, some concrete steps in addressing them, and sketch out
remaining work.

2 A Memory Model

A memory model describes the behavior of threads with respect to basic memory
operations – mainly reads and writes of variables potentially accessible across
multiple threads. The main questions addressed by a memory model include:

2



Atomicity: Which memory operations have indivisible effects?

Visibility: Under what conditions will the effects of a write action by one
thread be seen by a read by another thread?

Ordering: Under what conditions are sequences of memory operations by one
or more threads guaranteed to be visible in the same order by other
threads?

Until recently, memory models had been described rigorously only for hard-
ware systems, not programming languages. However, the work underlying the
revised Java Memory Model specification [1] and related efforts have resulted
in models that can be readily applied to C++. We anticipate that this part
of the specification will mainly be a matter of adapting, not creating, a formal
model. As such, the process of defining a sound memory model for C++ can
reuse the years-long effort that was invested in defining, peer-reviewing, refin-
ing, and debugging the mentioned formal model. We believe such reuse to be
tremendously beneficial in terms of correctness and time savings.

3 Memory Effects

A memory model defines categories of memory actions. For example actions that
act as acquire and release operations guarantee visibility of a set of updates by
one thread to another. The next step for a language specification is to map
these notions to all of the memory-related constructions in the language. This
process entails nailing down a large set of “small issues” that are necessary for
programmers to be able to predict and control effects. Areas that we have so
far identified include:

Atomicity A given platform may guarantee atomicity only for reads and writes
of certain bit widths and alignments. The spec must permit these to
vary, and must therefore provide some means for programs to query these
properties.

Extra writes There are several cases in C++ in which compilers and machines
have historically been permitted to issue writes that are not obvious from
inspection of source code. The most notable examples involve structures
with small fields. For example, given:

struct S { short a; char b; char c; } s;

an assignment such as s.a = 0 might be executed as if the code were
*(int*)&s = 0 if a compiler infers from context that b and c are zero as
well, as in the following example:

void Fun(S& s) {
if (s.b == 0 && s.c == 0) {

s.a = 0;

3



}
}

Another instance of this problem is with hardware that doesn’t support
memory writes below a certain size (often, sizeof(int)). In that case, if
S is “packed” such that sizeof(S) == sizeof(int), the compiler must
generate code for s.a = 0 to read the entire s object in a register, mask
a portion of it, and write back the entire object to memory. Effectively,
simply writing the field S::a became a (possibly non-atomic) read-write
operation as far as the neighboring fields S::b and S::c are concerned.

This would be unexpected at best in a multithreaded context in which the
other fields were also being assigned concurrently. A spec must clearly
define whether and when such compiler transformations remain legal.

Volatile data In the current language spec, the volatile qualifier is mainly
used to indicate guaranteed order of reads and writes within single-
threaded semantics—for example for device control registers, memory-
mapped I/O, or opaque flow (as in setjmp or interrupts). In a multi-
threaded language, it may be useful for volatile to take on the extra bur-
den of constraining inter-thread visibility and ordering properties. There
are a few options for the detailed semantics. In the simplest, volatile
reads act as acquire and writes as release. This has the virtue of be-
ing relatively easy to use by programmers who are not intimately familiar
with memory models. For example, the infamous “double-checked lock-
ing” idiom [4] works as expected under these rules if references are de-
clared as volatile (and other lock-based rules below are followed). This
has the disadvantage of imposing “heavier” constraints on the compiler
and processor than necessary in very performance-sensitive applications.
However, optimizers can often eliminate unnecessary operations (such as
consolidating several consecutive acquire and release operations into
one). To help optimizers in the few remaining situations, weaker forms
could also be provided as operations on atomic variables, as discussed
below.

Opaque calls One concern about moving to multithreaded specifications is
that compilers may become overly conservative when compiling code with
opaque function calls—flushing and reloading registers and/or issuing
memory barriers in case the called function’s effects depend on this. It
may be desirable to allow programmers to control this using some kind
of qualifier. Options include those with defaults in both directions; for
example, assuming lack of effects unless a function is qualified as, say,
mutable; versus assuming effects unless qualified with some extended form
of const. Alternatively, or in addition, the spec could include a means for
programmers to tell compilers that a certain program is either definitely
single-threaded or definitely multithreaded, as a way of controlling certain
optimizations. Further exploration of options and their consequences is

4



needed. These considerations are very related to an existing C++ stan-
dardization proposal [2].

4 Atomics

Atomic update operations (as well as associated memory barrier instructions,
which impose memory ordering constraints on the processor) form the basis for
essentially all modern multithreaded synchronization and coordination. While
there is some diversity across architectures in the nature and style of these
instructions, there is enough commonality in current and medium-term-future
systems to define a small set of intrinsics that can be used for portable concurrent
programming. There are several stylistic options here. One approach is to define
three small intrinsified inlinable classes, one each holding a single value of type
int, long, and (templated) pointer, and supporting operations such as:

namespace std {
class atomic_int {
public:

int get();
int set(int v);
bool compare_and_set(int expected_value, int new_value);

int weak_get();
int weak_set(int v);
bool weak_compare_and_set(int expected_value,

int new_value);

// other minor convenience functions, including:

int get_and_increment();
int get_and_add(int v);
// ...

};
}

The main attraction of this approach is that it appears to be implementable
on essentially any platform. Even those machines without such primitives can
emulate them using private locks. And even though some machines (such
as PowerPC) support LL/SC (load-linked, store-conditional) instead of CAS
(compare-and-set), in practice, nearly all usages of LL/SC are to perform CAS
(the reverse is impossible), so there would rarely be motivation to resort to
non-standardized, non-portable constructions even on these platforms.

The idea of the “weak” versions is to permit finer control of atomics and
barriers than otherwise available using volatile or other constructions. For
example, a weak_set need only perform a store ordering barrier, not a full
release, which may be cheaper on some machines. (Details are yet to be fully
worked out. Additionally, a refinement of this approach relying more heavily on

5



templates and traits will unify the interface appropriately.)

5 Thread Library

Currently, multithreaded C++ programs tend to rely primarily on one of a fairly
small set of libraries for threading support: POSIX threads, Win32, ACE, and
Boost. These possess many more similarities than differences. The opportu-
nity arises to provide a standard library that conservatively abstracts over such
packages.

Even if this is not done, such libraries must, to conform to the rest of this
proposal, specify their basic locking primitives in terms of the memory model.
All basic locks should and do provide semantics in accord with the basic acquire
and release actions specified by the Standard. Compilers in turn must respect
these semantics. The mechanics to ensure this would rely on how the opaque
call issue mentioned above is resolved.

In this draft we do not even sketch out the APIs of this library. A future
draft will include proposed classes developed with the involvement and feedback
from users and developers of existing libraries.

References

[1] Tim Lindholm et al. Java Specification Request 133: Memory Model and
Thread Specification Revision. Available at http://www.jcp.org/jsr/
detail/133.jsp.

[2] Walter E. Brown et al. Toward Improved Optimization Opportunities in
C++0X. Document WG21/N1664 = J16/04-0104; available at http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1664.pdf, Jul 2004.

[3] IEEE Standard for Information Technology. Portable Operating System In-
terface (POSIX) — System Application Program Interface (API) Amend-
ment 2: Threads Extension (C Language). ANSI/IEEE 1003.1c-1995, 1995.

[4] Scott Meyers and Andrei Alexandrescu. C++ and The Perils of Double-
Checked Locking. Doctor Dobb’s Journal, Jul 2004.

6


