J16/04-0005
WG21/N1565

January 22, 2004

J. Stephen Adamczyk
Edison Design Group, Inc.
| sa@dg. com

Adding thel ong | ong typeto C++

| propose that we add the |l ong | ong integral type to C++. Thisis desirable to make C++ more
compatible with C99 and with the draft EcmaTG5 C++/CLI standard.

Adding | ong | ong was proposed previously by Roland Hartinger in June of 1995, in J16/95-
0115=WG21/N0715. At thetime, | ong | ong had not been considered by the C committee, and
the C++ committee was reluctant to add a fundamental type that was not also in C. Almost a
decade | ater, the world looks different: | ong | ong is part of C99, and many maor C++ compil-
ers support it. It'stime to standardize it in C++.

Thisisissue ES016 on the Evolution Working Group issues list.

What To Call It

Okay, let’s deal with the “ick” factor first. Yes, “| ong | ong” isan ugly way of spelling a 64-bit
integer type. Yes, it doesn’t provide a growth path when we find we need a 128-bit integer type
(“l ong |1 ong | ong”, anyone?).

My advice: get over it. It's ugly, but it's standard (de facto for C++, and de jure for C). We can
consider other possibilitiesin the future, but the only thing that makes sense now is| ong | ong.

The Uncontroversial Parts

If we can get past the spelling “| ong | ong”, anumber of aspects are relatively uncontroversial:

* Therearetwo new integral types, | ong | ong and unsi gned | ong | ong, which are at
least 64 bits long.

» Thereare new suffixesfor literal constants, LL and ULL, which indicate| ong | ong and
unsi gned | ong | ong constants, asin 9223372036854775807LL.

» Theusual arithmetic conversions and the integral promotion rules are updated to handle| ong
| ong and unsi gned | ong | ong operands.

* enunsand bit fields can havel ong | ong or unsi gned | ong | ong type.

 Theprintf andscanf formatting strings have anew length specifier | | , whichisused for
| ong | ong andunsi gned | ong | ong arguments, asin % | d.

 <climts>hasnew macrosLLONG M N, LLONG_MAX, and ULLONG_MAX.

* The C++ library has new overloadsfor | ong | ong and unsi gned | ong | ong operands,
e.g., for extractors and inserters.

Adding thel ong | ong type to C++ (J16/04-0005 = WG21/N1565) 2

PartsWe Don’'t Need From C99

In C99, thel ong | ong extension is somewhat intertwined with two other changes:

1. Extended integer types, which alow implementations to have other sizes of integral types
beyond those required by the standard (notably, bigger ones).

2. The<st di nt . h> header, which provides names for types that map to specific sizes, e.g.,
i nt 64 _t for an exactly-64-bit signed integer. It also provides some useful typeslike
i nt max_t , which gives the largest available signed integer type.

| think these are fine, but also | think they can be considered separately from| ong | ong without
problems down the road. They’re not included in this proposal.

A Logistical Problem

The current C++ standard refers to the C library by reference, and it specifies the C89 version of
the standard plus the 1995 amendment. | presume that the Library Working Group will be updat-
ing that. Ideally, changeslikethosefor thepri nt f andscanf formatting stringswould be han-
dled simply by pointing to the C99 standard. However, if that’s not possible we could add text for
specific additions to the C89 specifications.

The Controversial Part

C99 made one decision that’s controversial. In the rules for determining the type of aliteral con-
stant, there are lists of types for various forms of constants. A constant’s type is the first of the
types on the list into which the valuefits. That approach isthe samein C99 and C++. However, in
two cases the C99 lists are not ssmply what one would expect for a straightforward extension of
the C89 and C++ lists:

1. For an decimal constant with no suffix, the C99listisi nt,l ongint,l onglongint.
2. For adecimal constant withan| or L suffix, the C99listisl ongint,l onglongint.

For upward compatibility with C89 and C++, unsi gned | ong i nt should appear on each of
those lists after | ong i nt . It doesn’t, and that means a constant with one of the forms above
whose value istoo largefor | ong but fitsinunsi gned | ong, e.g., 4000000000 on an imple-
mentation with 32-bit| ongs, hasadifferent typein C99 than it doesin C89 or C++ (I ong | ong
rather than unsi gned | ong).

The C committee made an explicit decision to introduce this incompatibility with C89. Why? It
has to do with extended integer types and planning for the future. Consider a constant like
18446744073709551615, which istoo big to fit in a64-bit | ong | ong. If aC99 implementation
has a nonstandard integer type larger than 64 bits, it would make sense to treat that constant as a
signed value of that larger type. What if the implementation does not have such atype? Well, the
constant would fitinunsi gned | ong | ong, but allowing an implementation to use that type
would be unfortunate, because the same constant would be signed on some implementations and

Adding thel ong | ong type to C++ (J16/04-0005 = WG21/N1565) 3

unsigned on others. So to avoid that the C99 standard mandates an error for that constant if there
isno signed type that can represent it. This gives consistent behavior across different implementa
tions, and also allows the graceful addition of a future standard 128-hit integer type.

Thisisall fine and noble, and not a source of incompatibility, when applied at the upper end of the
| ong | ong range, but the same principleis aso applied at the upper end of thel ong range and
there it makes a difference in a program like

#i ncl ude <stdio. h>
int min() {
if (4000000000 > -1) {
printf(">\n");
} else {
printf("Not >\n");
}

return O;

}

which produces different output in C99 than it did in C89. (C99 outputs “>".

Is this difference necessary? No. C99 could have left the types of those existing constants the
same. (EDG’s front end does that when it supports| ong | ong in C++ mode currently.) But the
consistent application of the rule does make sense: It guarantees that a constant that 1ooks signed
really issigned. That's a good thing, because any use of an implicitly-unsigned constant is a
potential bug. (In the above fragment, for example, it would be hard to argue that the C89/C++
behavior is more desirable than the C99 behavior.) If the programmer really does want an
unsigned constant, he/she can request that explicitly by adding a U suffix to the constant, and that
will improve the readability of his/her program and work the same way in C89 and C99.

So: C++ can either preserve upward-compatibility with C++98 or be compatible with C99. | rec-
ommend that we go with the C99 approach. In practice, there's not much code that would be
affected, and I’d bet that, in half the cases that change, the C99 behavior was what the program-
mer intended in the first place.

(Somewhat) Detailed Working Paper Changes

In 2.13.1 [Iex.icon], the syntax for integer constants needsto allow | | and LL suffixesasin C99
6.4.4.1. Mixed case (“| L") isnot allowed. If the suffix also includes a U, it can appear before or
after thel | or LL.In 2.13.1p2, the rules for determining the type of a constant need to be
extended as described above. See the tablein C99 6.4.4.1p5.

In 3.9.1 [basic.fundamental] p2 and p3, add | ong | ong and unsi gned | ong | ong. See C99
6.2.5p4. Note that the footnote on 3.9.1 [basic.fundamental] p7 that mentions enumintegral pro-
motion also needs to be changed.

In 4.5 [conv.prom] p2, the integral promotions for wehar _t and enunsneed to include | ong

Adding thel ong | ong type to C++ (J16/04-0005 = WG21/N1565) 4

| ong and unsi gned | ong | ong. Note that this paragraph deals with the promotion of those
typesto an integral type, not widening, so it does need to be changed. 4.5 [conv.prom] p3 on bit
field promotions should require no changes.

In 5 [expr] p9, the usual arithmetic conversions rules, add after the fourth step:
» Then, if either operand isunsi gned | ong | ong, the other shall be converted to
unsi gned | ong | ong.
e Otherwise, if one operandis| ong | ong and the other unsi gned | ong i nt or
unsi gned i nt, thenif al ong | ong can represent all the values of the unsigned operand
type, the unsigned operand shall be converted to | ong | ong; otherwise both operands shall
be converted to unsi gned | ong | ong.
* Otherwise, if either operand is| ong | ong, the other shall be convertedto| ong | ong.
and the“Then” at the start of thefifth step is changed to “ Otherwise”. The C99 version of thisisat
6.3.1.1 and 6.3.1.8; it uses a fancier approach involving assigning ranks to the integer types.

In 5.8 [expr.shift] p2 add the unsi gned | ong | ong shift case, with reduction modulo
ULLONG_MAX+1.

In7.1.5.2 [dcl.type.ssmple] add the new type specifier combinations| ong | ong, si gned | ong
| ong,l ongl ongint,signedlonglongint,unsignedl ongl ong, andunsi gned
I ong |l ongi nt inTable7.

In 7.2 [dcl.enum] p5, no change is needed for the underlying type of an enum

In 16.1 [cpp.cond] p4,i nt ,unsi gned i nt,| ong, andunsi gned | ong preprocessing
expressions should be remapped to| ong | ong and unsi gned | ong | ong. See C99
6.10.1p3, which usesi nt max_t and ui nt max_t .

The library sections need to be updated. f pri nt f andf scanf formatting strings alow thel |
length modifier (see C99 7.19.6.1p7 and 7.19.6.2p11). <cl i m t s> needsLLONG M N,
LLONG_MAX, and ULLONG_MAX. C++ 22.2.2.1.2 [lib.facet.num.get.virtual 5| table 56 and
22.2.2.2.2 [lib.facet.num.put.virtuals| table 59 refer to the st di o-style length modifiers. Also
note that apparently the only thing that establishes minimum sizes for the integral typesin the
C++ standard is the requirement that they match the <cl i m t s> macro valueslike | NT_MAX;
see the footnote in 3.9.1 [basic.fundamental] p2. N1568 by P.J. Plauger covers all necessary
changes.

	What To Call It
	The Uncontroversial Parts
	Parts We Don’t Need From C99
	1. Extended integer types, which allow implementations to have other sizes of integral types beyo...
	2. The <stdint.h> header, which provides names for types that map to specific sizes, e.g., int64_...

	A Logistical Problem
	The Controversial Part
	1. For an decimal constant with no suffix, the C99 list is int, long int, long long int.
	2. For a decimal constant with an l or L suffix, the C99 list is long int, long long int.

	(Somewhat) Detailed Working Paper Changes

