
 Doc No: SC22/WG21/N1467

 J16/03-0050

 Date: 01-Apr-2003

 Project: JTC1.22.32

 Reply to: Daniel Gutson

 danielgutson@hotmail.com

NON DEFAULT CONSTRUCTORS FOR ARRAYS

1. The problem

When declaring arrays, their elements are initialized with the default constructor (for
objects), or with garbage (for PODs). There is no way of specifying other type of
construction or initialization mechanism.
This issue has two consequences:

1- for non constant objects: a) requires a second step (post construction) to iterate
over recently created objects for initializing them which represents additional
code, and probably not as efficient as the compiler would automatically
implement it. The size and complexity of the additional required code grows with
the number of dimensions in the array, when it could be made by the compiler.

 b) requires that objects to be allocated in this way (as
arrays) have to provide an interface (i.e. projectors) for the post-construction
initialization; however, references and const members cannot be used if they must
be initialized thru parameters of constructors in the initializer list. Moreover, if the
object does not provide a visible/available default constr., it cannot be “arrayed”.

2- for constant objects: can rarely be used as arrays as far as they will not be
modified after construction, mandatoryly requiring initializing information from
constr-parameters. Even for PODs when a constant bunch of elements must
occupy a space with a fixed value.

- How are people addressing, or working around, the problem today? For

constructing non constant arrays, there are two common ways:

1) do thru “for” statements (as many nested as dimensions the array
has), and “manually” initialize individually each element (in the
‘for’ body).

2) For PODs [when all the elements must have the same value], it’s
also common to initialize them using a memory function (i.e.
memset) when possible.

- Why is the problem important?

a) Because, when default-constructor is available for the purpose,
requires additional workarounds (see above), impacting in
performance, productivity, and effort. Also, might impact in
readability of classes interface when special accessing mechanisms

are required when the information should come in the (non-
default) ctor.

b) And arrays of constant objects are important –for example- for
performance when preprocess phase (and not time-critical) could
perform calculus as a pre-processed data repository for a “later”
time-critical phase. This still can be done from design, but
conceptually such data should be “self-calculated” (in ctor) and
remain constant for the rest of the program (even for the pre-
process phase). This concept cannot be exactly reflected in code.

Categories:

* improve support for systems programming (performance, coding overhead).
* improve support for library building (releases the user from additional tasks mentioned
above, requiring additional knowledge of the object’s interfaces while the work could be
performed by the library implementation in the [non-def.] ctors).
* remove embarrassments (code can be cleaner as far as initialization can still be
performed in ctors, instead of the instantiation/use place).

2. The proposal

Enable non-default constructors for arrays, placing the parameters after the brackets

2.1. Basic cases:
int mat [10] [10] (0); //invokes int (int) for each element

BlocksInfo blocks [10] (database); //invokes BlocksInfo (database&);

2.2. Advanced cases:
Dynamic memory, dynamic-state of constructor parameters:

const X *x = new X [length](++position); //see 3.2
 Y y [10](f()); // see 3.2

3. Interactions and Implementability

3.1. Interactions

• Non-default constructors usage for array elements
• Proposed syntax not currently supported, therefore no incompatibility

issues presented
• Non-default constructor for array members from the initializer list: the

syntax proposed for this is the array member name, followed for as
many empty brackets as dimensions it has, and then the constructor
invocation:

MyClass: My Class ():

 _myArray [][] (data) // contructs “_my Array” elements
with “data”

3.2. Implementability
- when constructing arrays of PODs, and constant (or non-volatile

parameters are used), the compiler might allocate the code first and then
stamp the value over.
But, when one of the following situations occur, the compiler should
invoke the construction statement for each element (even if a dynamic
length was specified thru “new” operator):

- the parameters vary their state for each ctor-call (i.e. functions or
increment/decrement operators as the examples of 2.2)

- the constructor modifies the state of any component of the program

In general, we could resume these points saying “when the individual
construction statement modifies the state of any component of the system”.

