
rary
nd I

icated
make
b) oth-
r in the

 value
y the
is class

 the
ctor at
er on

t
int of
ot
J16/00-0063
WG21/N1286

November 7, 2000
J. Stephen Adamczyk

jsa@edg.com

The point of destruction of a call argument temporary

Introduction

I was recently trying to determine what the standard says about the point at which a tempo
created to pass an argument to a call is destroyed. After a bit of work, I think I figured it out, a
think what the standard says is probably okay. However, because the rules are a bit compl
and surprising, I decided to write up my understanding so that there is a summary that will
things clearer for implementors, and to see whether (a) others agree with my conclusions, (
ers feel the specification should be changed, or (c) there’s a desire to see this made cleare
standard.

What’s being created?

More on this in a moment, but the simple summary is that, when an argument is passed by
for a parameter of class type, the parameter is initialized by calling a copy constructor to cop
argument. This creates a local class object in the parameter. When the function returns, th
object must be destroyed. But who does this destruction, and when is it done?

struct A {
 A();
 A(const A&);
 ~A();
} a;
void f(A);
int main () {
 f(a); // a is copied to the parameter; the parameter object is
 // later destroyed
}

Inside or Outside?

The first question I wanted to answer was whether the caller or the called function must do
destruction. There is existing practice for both approaches: some compilers call the destru
the point of call, and some generate code within the called function to destroy the paramet

return1. Destroying the parameter within the called function has a certain appeal, because i
allows a compiler to emit a single copy of the destruction code rather than a copy at each po
call. However, as it happens, 5.2.2 [expr.call] paragraph 4 makes it pretty clear that that is n
allowed::

The point of destruction of a call argument temporary (J16/00-0063 = WG21/N1286) 2

ing

tion
g func-
an-

g as
 leav-
d

turn a
ple-
e

times

ion or
arame-
that it
 5.2.2

type, as

d as
ich is

y that
alue is
a little
ference,

y

The initialization and destruction of each parameter occurs within the context of the call
function. [Example: the access of the constructor, conversion functions or destructor is
checked at the point of call in the calling function. If a constructor or destructor for a func
parameter throws an exception, the search for a handler starts in the scope of the callin
tion; in particular, if the function called has a function-try-block (clause _except_) with a h
dler that could handle the exception, this handler is not considered.]

Under the “as if” rule, one could still put the destruction code inside the called function as lon
there’s no way to tell the difference. One would have to do the parameter destructions after
ing any function-try-block, after leaving the range of the exception specifications of the calle
function, after evaluating any expression on the return statement, and, for functions that re
class type by value, after calling the copy constructor to copy the return value. But that’s im
mentation; from the point of view of the standard, it’s clear that the destruction is done by th
caller. The question then remains: when does the destruction get done?

Is it a Parameter or a Temporary?

The class object constructed: what is it? Is it the parameter or is it a temporary? Well, some
it’s the parameter, and sometimes it’s both.

When the argument expression has the same type as the parameter (or a cv-qualified vers
derived class thereof), no temporary is created. The argument expression is copied to the p
ter via a copy constructor. In that case, it’s clear that the object created is the parameter and
must be destroyed at the point of return of the function, as indicated by another sentence in
[expr.call] paragraph 4:

The lifetime of a parameter ends when the function in which it is defined returns.

When the argument expression does not have the same type as the parameter (or a related
defined above), the initialization is really

• a temporary is initialized from the argument expression, and then
• the parameter is initialized by copying the temporary using a copy constructor.

In practice, implementations will usually elide the second step. If that is done (see 12.8
[class.copy] paragraph 15), the object created is both the parameter and the temporary, an
such it is destroyed at the later of the two points where those objects would be destroyed, wh
to say, at the end of the full expression containing the call.

Note that the point of destruction for the two cases is different. One might be tempted to sa
the standard should be changed to say that a temporary created to pass an argument by v
destroyed on return from the call, thus making those two cases the same. However, if we go
further and consider a case like the second case except that the argument is passed by re

1. Note that all implementations call the constructor at the point of call. This is necessar
because the constructor is selected by overload resolution, and might be different on
different calls.

The point of destruction of a call argument temporary (J16/00-0063 = WG21/N1286) 3

as life-
e

p-
iginal

t in

 side

ight
mend
ition,
we find that in that case the class object that’s created is the temporary alone, and as such h
time to the end of the full expression (12.2 [class.temporary] paragraph 5 mentions this cas
explicitly).

An example might be helpful:

struct A {
 A();
 A(const A&);
 ~A();
} a;
struct B {
 operator A();
} b;
void f(A);
void g(const A&);
int main() {
 f(a); // (1) Object destroyed on return from function
 f(b); // (2) Object destroyed at end of full expression
 // (if no elision done, parameter destroyed on
 // return, temporary destroyed at end of full
 // expression)
 g(b); // (3) Object destroyed at end of full expression
}

Changing the rules for (2) to make it like (1) would make (2) unlike the very similar (3). It su
pose one could consider changing the rules for (3), but that starts to get pretty far from the or
issue and might have side effects elsewhere.

In this example, of course, “on return” and “at end of full expression” are indistinguishable, bu
general they are not the same. If the expressions were more complicated, for example

 h(f(b), g(b));

one could observe the difference between the two by way of the point of occurrence of any
effects of the destructor calls.

Conclusion

The rules in the standard are clear (with careful reading). They’re a bit convoluted and they m
appear inconsistent in some ways, but in spite of that they’re probably reasonable. I recom
that we explore putting more text and examples into the standard to clarify the current defin
but that we not otherwise change it.

	Introduction
	What’s being created?
	Inside or Outside?
	Is it a Parameter or a Temporary?
	Conclusion

