
Accredited Standards Committee* Doc No: J16/99–0014
X3, INFORMATION PROCESSING SYSTEMS WG21/N1191

Date: 23 February 1999
Project: Programming Language C+ +
Reply to: Andrew Koenig

AT&T Research
180 Park Avenue, room E265
PO Box 971
Florham Park, NJ 07932–0971 USA
ark@research.att.com

Defect report: definition of default-initialization
(revised)

Andrew Koenig

Revision history

This document is a revision of, and supersedes, 98–0018/N1161, dated 25 August 1998.

Summary

The standard defines the concept of default-initialization for an object of type T in subclause 8.5
[dcl.init], paragraph 5, as follows:

• if T is a non-POD class type (clause 9 [class]), the default constructor for T is called (and the
initialization is ill-formed if T has no accessible default constructor);

• if T is an array type, each element is default-initialized;

• otherwise, the storage for the object is zero-initialized.

This definition is appropriate for local variables, but not for objects that are initialized as a result
of executing expressions of the form T() , because the objects yielded by such expressions will be
copied immediately, and should therefore have values that are assured of being copyable. To this
end, I propose adding the following new text to 8.5, paragraph 5:

To value-initialize an object of type T means:

• if T is a class type (clause 9 [class]) with a user-declared constructor (12.1), then the
default constructor for T is called (and the initialization is ill-formed if T has no
accessible default constructor);

• if T is a class type without a user-declared constructor, then every non-static data
member and base-class component of T is value-initialized;

• if T is an array type, then each element is value-initialized;

• otherwise, the storage for the object is zero-initialized.

In addition, I propose to change ‘‘default-initialization’’ to ‘‘value-initialization’’ in 5.2.3
paragraph 2.

The balance of this note explains the effects of this change and why I think it is important.

__________________

* Operating under the procedures of the American National Standards Institute (ANSI)
Standards Secretariat: CBEMA, 1250 Eye Street NW, Suite 200, Washington DC 20005



- 2 -

Ancient history

Once upon a time, an AT&T compiler developer named Laura Eaves asked me: ‘‘What should be
the value of int()?’’ My first thought was that it should be the same value as x has after saying

int x;

but I soon realized that that definition would not do. The reason is that x has an indeterminate
value (assuming that it is a local variable), but we don’t mind that x is indeterminate, because we
are presumably going to assign a value to x before we use it. In contrast, int() had better not
have an indeterminate value, because copying such a value has an undefined effect. It would be
silly to forbid a compiler from flagging int() during compilation, only to allow it to flag it
during execution!

So our compiler defined int() as zero, and similarly for other built-in types.

About the same time, I was working on an associative-array class library, and I had the following
problem:

Map<int, int> m; // my class was called Map, not map

int x = m[42];

What should the value of x be at this point? There is ample experience to argue that it much
more useful for map elements to acquire a known initial value by default, and that that value
should be zero for numeric types. For example, such a policy makes it possible to count how
many times each distinct word occurs in the input by writing

Map<string, int> word_count;
string word;

while (cin >> word)
++word_count[word];

Unless the Map class initializes elements to zero automatically, this program becomes much
harder, because it becomes necessary to test whether each element already exists before we try to
increment it, and to initialize the element if it does not yet exist.

Even though the compiler guaranteed that int() was zero, the language definition at the time
did not, so I defined my map class to use a static variable to initialize map elements, along the
following lines:

template<class Key, class Value> class Map {
// ...
static Value default_val;
// ...

};

// and, in a separate file:
template<class Key, class Value>
Value Map<Key, Value>::default_val; // static, hence automatically initialized

This strategy gave me the behavior that I wanted, but with the unfortunate side effect of relying
on the order of static initializers in the case where the value type was a class with a constructor.

More recent history

Let us now move forward a few years. In one of the early standards meetings, I brought up the
issue of T() . There was a great deal of discussion, much of which centered around the question
of what it would cost to initialize a copy of T() if T were defined as, for example,



- 3 -

struct T {
int x[100000];

};

Everyone agreed that

T t;

should not cause any initialization, lest C+ + be put at a performance disadvantage compared
with C. But Laura Eaves’ argument was telling in the case of T() : Either all the elements of
T().x must be defined, or else copying the value of T() (which is the only thing you can do
with it!) has an undefined effect.

The outcome of this discussion was a change in the meaning of T() . The November, 1993
working paper says (in expr.type.conv) that ‘‘the result is an unspecified value of the specified
type.’’ The corresponding phrase in the March, 1994 working paper says that ‘‘the result is the
default value given to a static object of the specified type.’’

This definition persisted until the July, 1995 working paper, when it was changed to its current
form. I do not recall any discussion about the change, so I believe that the change was intended
as a clarification, rather than as a normative change. However, it does change the behavior, and
in a highly dangerous way.

The hazard

The change in behavior affects classes that are not PODs, but which look like PODs from their
authors’ perspective. For example:

struct Foo {
int x;

};

is a POD, but

struct Bar {
int x;
string s;

};

is not. In order to see that Bar is not a POD, we must look at the definition of class string .
Whether or not a class is a POD is a low-level concept, the primary purpose of which is to
determine whether library functions, such as memcpy , that deal in raw memory, will work with
objects of that class.

Under the 1994 definition, Foo().x and Bar().x are both guaranteed to be zero. Under the
July, 1995 definition, Foo().x is still guaranteed to be zero, but Bar().x is undefined. Indeed,
merely copying the value of Bar() is undefined, which effectively renders Bar() useless.

Now let us turn to the definition of operator[] for library class map . Subclause 22.3.1.2
[lib.map.access] defines map member

T& operator[](const key_type& x);

as having the same effect as

(*((insert(make_pair(x, T()))).first)).second

Note the use of T() . It is there to provide a default value in case the map element does not
already exist, but it is evaluated regardless of whether the element exists.

The implication of this definition is as follows:



- 4 -

Foo foo; // foo.x is implicitly zero
Bar bar; // bar.x is implicitly zero

void f()
{

map<int, Foo> m1;
map<int, Bar> m2;

m1[0] = foo; // OK
m2[0] = bar; // Undefined!

}

The reason that the assignment to m2 is undefined is that evaluating m2[0] is equivalent to
evaluating

(*((insert(make_pair(0, Bar()))).first)).second

and the effect of copying Bar() as an argument to make_pair is undefined.

In fact, we do not even need maps to evoke this problem: We find the same difficulty with

vector<Foo> v1; // OK
vector<Foo> v2(100); // OK
vector<Bar> v3; // OK
vector<Bar> v4(100); // Undefined!

The problem here is essentially the same: Giving a size to v4 is a request to initialize its elements
to copies of Bar() , and copying Bar() has undefined effect.

If you think that class Bar is contrived, consider this alternative:

struct Customer {
int account_number;
string name;

};

This is an example of the kind of data structure that surely comes up all the time in business
applications. Can it really be right to prohibit C+ + programmers from using vectors of
Customer objects—especially when built-in arrays of Customer objects are allowed?

Efficiency

When I first noticed this problem, I thought that the right solution was for the value of T() to be
defined by first zero-initializing and then default-initializing the object. However, that strategy
pays a penalty that I now think is unnecessary:

class T {
public:

T() {
for (int i = 0; i < 100000; ++i)

a[i] = -1;
}

private:
int a[100000];

};

It is reasonable to expect that evaluating T() does not involve zeroing all the elements of T::a
and then setting them to -1 . After some thought, I concluded that the problem is relevant only
to data members that are out of reach of any constructor, which does not include T::a in this
example. That is, once a user writes a constructor for a class, it is entirely reasonable to expect



- 5 -

that constructor to initialize all the data members. The problem case is only when the author of a
class did not write any constructors, but the class acquired a constructor because a member or a
base class happens to have one. In other words:

struct Baz {
Baz() { }
int x;
string s;

};

Here, the author of Baz had the opportunity to initialize x and did not do so. I consider that
omission to be an ordinary programming error, and it does not bother me that copying Baz() is
undefined. If the author of Baz wanted to define copying, the author should either written a
copy constructor that did not copy x , or ensured that the other constructors all initialized x . It
been ever thus. My proposed change, therefore, does not define Baz().x .

Nor does it define bar.x in

void h()
{

Bar bar;

// bar.xf2 is undefined here
}

People expect local variables to be uninitialized unless they explicitly initialize them, and I am
not proposing to change that.

Conclusion

Programmers who are using C+ + for ordinary applications are likely to expect to be able to write

struct Customer {
int account_number;
string name;

};

and then define objects such as

int main()
{

vector<Customer> vc(100);
// ...

}

It is likely to come as a shock that the standard does not sanction this seemingly obvious usage.
At present, this definition has undefined effect during execution—even though changing
Customer::name from a string to a char* , for example, would make the definition of vc
well defined.

Indeed, a protracted debate resulted in making this usage legal in November, 1993. When it was
made illegal again in July, 1995, I believe that the change was inadvertent. The notion that
Customer().account_number is undefined, even though int() is guaranteed to be zero, is
too much of a violation of the principle of least surprise to be allowed to stand.


