Project: WG21/X3J16

Document Number: N1166/98-0023

Written by: Nathan Myers
ncm@ecantrip.org

Date: 1998 October 6

Extension Namespace Recommendations

It is routine for other standards bodies to define extensions declared

in standard headers. Vendors are obliged to implement these extensions
regardless of their effect on C++ Standard conformance. Typically the
extensions are defined for C only, and implementors must extrapolate
those definitions to their C++ products. In any case, these extensions
create difficulties for standards (plural) conformance, particularly

when different standards bodies (or the same bodies at different times)
define different semantics for the same names in the same header.

For example, the C9x group is considering a global name "clog" even
though C++ already uses that name scoped as "std::clog". Since the
namespace directives can easily throw these names into conflict,
implementors will be confronted with difficult choices. The POSIX and
X/Open groups define a variety of names specified to appear in standard
headers, which for conformance must currently be guarded by #if blocks
which rarely provide much actual help to users. In <time.h>, the
semantics different groups specify for the same names are incompatible.
Standards bodies sometimes change the interfaces or semantics of their
own previous extensions.

While WG21 (obviously?) cannot specify non-standard interfaces, we can
offer guidance to other standards bodies and (perhaps more importantly)

to implementors translating standards to the C++ environment, to help

avoid conflicts now and in the future. The immediate moment offers a

unique opportunity to prevent conflict, rather than try to ameliorate

it later, by recommending a pattern for namespaces to encapsulate
extensions. This would be especially helpful for vendors adopting C
extensions, because otherwise they must choose whether to make the names
global, as in C, or put them in namespace std like the other names,

or choose another namespace unlikely to match other vendors’ choices.

The essence of this proposal is to resolve to issue a short technical
report, as soon as possible, recommending a pattern for namespace
encapsulation of library extensions, and to outline what the report
might include.

For established standards we can recommend specific names; for others we
can recommend a pattern that vendors can use when adopting (or defining
their own) extensions. Given adherence to a well-chosen pattern, the

actual name a vendor or committee chooses for names we do not specify

is less important than might be assumed, because namespace aliasing
allows many conflicts to be resolved.

For a hypothetical example, consider the C89 standard. The C++ standard
adopts most of its names into the std namespace, but there are some
differences. The C++ standard does not specify whether they are extern
"C" or "C++", and it defines replacements for some, such as strchr.
Suppose a vendor had a need to provide, in addition to the C++ definitions,
access to the actual C declarations -- declared extern "C" with C calling
conventions. These could certainly be wrapped in a namespace, but what
would it be called?

The pattern we suggest for the namespace name could be simple: the
standards body name with a date stamp, followed by an alias lacking
the date stamp, such as:

namespace Iso _c 1989 {
extern "C" char* strchr(char const* s, char const* p);



The alias allows later revisions of the standard to be adopted as the
default, as is likely for the case of ISO C. Names from previous
standards can be adopted into each subsequent version, or shadowed.
We can further recommend that preprocessor macros in C standards that
can usefully be defined as properly-scoped C++ constants or inline
functions should be.

Of course, the above is just an example; details of the recommended
pattern will be worked out more fully in the proposal for the technical
report text. This proposal is simply for the committee to resolve to
publish a technical report as outlined above, and to request a detailed
proposal of its contents.



