Doc No: J16/97-0100

WG21/N1138

Date: November 12, 1997

Project: Programming Language C++
Author: Martin J. O'Riordan

MartinO_AtHome@msn.com

Clarifying Issues Concerning ‘extern “C™ and ‘namespace’

Motivation:
See Core Issue 922 for background.

Discussion:
How names are introduced by a using-directive/declaration is discussed in 7.3.3 and 7.3.4.

In 7.3.4, “using-directives”, no synonyms are introduced, hence there are no contentions at the using-
directive itself. The name lookup just enters the so named namespace into the set of namespaces to be
examined during the lookup. Lookup is transitive. It currently says nothing about “sameness”, but it does
have something to say regarding “same entity”.

7.3.495:

“If name lookup finds a declaration for a name in two different namespand the
declarations do not declare the same entity and do not declare functions, the use of the
name is ill-formed.”

In 7.3.3, “using-declarations” synonyms are introduced. Relevant references are as follows:
7.3.311:

“A using-declaration introduces a name into the declarative region in whichushrey-
declaration appears. The name is a synonym for the name of some entity declared
elsewhere.”

7.3.317:

“A using-declaration is adeclaration and can therefore be used repeatedly where (and
only where) multiple declarations are allowed.”

7.3.318:

“The entity declared by asing-declaration shall be known in the context using it
according to its definition at the point of theng-declaration.”

7.3.3110:

“If a function declaration in namespace scope or block scope has the same name and the
same parameter types as a function introducedusing-declaration, the program is ill-
formed.”

It appears therefore that the usage of “same entity” is already addressed by the existing wording of both
7.3.311 and 7.3.495 in a form suitable for application to ‘extern “C™ entities. The sentence in 7.3.317
already permits ‘using’ to provide multiple declarations to the same entity, renderingridpelecl arations

from multiple scopes to be described as redeclarations if they do describe the “same entity”.

7.3.3118 is not absolutely relevant to this issue, but needs watching.

However, 7.3.3110 does need work. | believe that for ‘extern “C™ and “same entity”, 7.3.3Y1 and 7.3.317
already catch the issues we want, since the namespace into which the name is being introduced will have
declared the “same entity”(7.3.311) making this a simple redeclaration(7.3.317). This should prevent
interpretation from getting as far as 7.3.37110. But if it “does” reach this paragraph, we would need to
reword it, as it treats functions especially. Why is this paragraph constrained to just functions? Shouldn't it
be for all names? | believe that this should be reworded to correct it.

What remains is the definition of “same entity” with respect to ‘extern “C” language linkage? This is
addressed by 7.596:

“At most one function with a particular name can have C language linkage. Two
declarations for a function with C language linkage with the same function name
(ignoring the namespace names that qualify it) that appear in different namespace scopes
refer to the same function. Two declarations for an object with C language linkage with
the same name (ignoring the namespace names that qualify it) that appear in different
namespace scopes refer to the same object.”

Thus it would appear that for functions and objects, the “same entity” definition holds. However, it clearly
excludes ‘types[An aside: with regard to ‘typedef’, does “same entity” and type mean the ‘typedef name
itself, or the type to which the ‘typedef name refers? After all, ‘typedef's are not types per se, but rather
synonyms for types. Where should this be said?]

Thus, given a reasonable review of the current words in the WP, the intended meaning already applies to
functions and objects with ‘extern “C™ linkage. Types however, fail to fall into this category and this does
leave some significant “issues”, such as what it means for C headers that desctibenthén’ interface.

For example thenkt i e’ function which depends on thet'ruct tm’ , both of which would typically

have ‘C’ linkage. This has the general form:-

extern “C” {
typedef arithmetic time_t;
structtm { ... };
time_t mktime (struct tm*);
}
namespace std {
extern “C” {
typedef arithmetic time_t;
structtm { ... };
time_t mktime (struct tm*);
}
}

using std::mktime; // error

Thisis an error, because there can only be one function of extern C language linkage in a given scope, and
here we are attempting to place two overloaded ‘extern “C™ functions:

cotime_t nktime (:itnr), /1 From gl obal
std::time_t mktime (std::tm*); // From ‘std’

into the same scope, as the typest'm and ‘st d: : t mi do NOT refer to the same entity.

Earlier versions of C++, as described in the ARM (a superset of one of our base documents) also attributed
the language linkage attributes to types and enumerates, but this preceded the existence of namespaces.
The current wording excludes types and enumerates, which is necessary to avoid the unprecedented
possibility of having multiple “definitions” of a type to occur in the same translation unit, but in different
namespaces which is what is required to make the above example work.

Consequently, the facilitation of ‘extern “C™ functions (and objects) doesn’t address the issue when they
consist of types that are not builtin, thus severely reducing its generality, and at the same time, failing to
resolve the C headers contention (al¢a. me. h> Vs.<ct i ne>).

In conclusion (using<t i me. h>" and ‘<ct i me>' as examples):

1. | believe that the working paper already addresses the “same entity’ness of ‘extern “C™ and
using-declarations with respect to functions and objects. A clarification would be in order
here, so as to define the committee’s intended interpretation of the existing words. Such a
clarification of intent could be described as a note, or a note and an example.

2. | also believe that the lack of “same entity” semantics for types and enumerates with ‘extern
“C” linkage, renders the issue moot in the presence of the requirements of actual C headers.

3. Itis not clear in the context of ‘typedef's and name lookup, whether “same type” means the
type for which the ‘typedef’ is a synonym, or to the ‘typedef name itself.

4. The only workable conclusion that satisfies the requirements for namespateahd the
legacy C headers as stated in Core #922, is to extend the “same entity” interpretation of
‘extern “C™ functions and objects, to types and enumerates. Doing so, raises the
unprecedented requirement that a definition of an entity may occur multiple times within the
same translation unit, with the consequent implications that has for the ODR. Note that this
is already expressly forbidden for ‘function definitions’ (7.596).

5. The WP does not require that the linkage for the names as described in the ‘C’ headers be
declared as ‘extern “C™ (17.3.2.292). They may indeed be declared as ‘extern “C++", so
even with the relaxation of rules concerning the “same entity’ness of types and enumerates
with ‘extern “C™ linkage, usage such as that required by the example above (and that in Core
#922) would remain unportable and implementation defined.

6. Clearly, it is not meaningful for a program to includet i me>’ into a namespace other
than global, or it would result in those names becoming nested inside another non-standard
namespace. Thus, it is evident thatti me>" may be included only at global scope.
Similarly, for ‘<t i me. h>’ there is no reason why the standard should permit inclusion into
a namespace other than global. This is especially true when the implementor has chosen to
use C++ language linkage for the C legacy interface. The only portable statement that the
standard can make, is that the inclusion of ALL standard headers must be done only at global
scope.

7. It is possible for an implementation to describeti‘me. h>" by providing using-
declarations to names provided #ct i ne>’, hence avoiding the issues concerning “same
entity” regardless of the linkage chosen.

Proposed Actions:
Proposal #1:
To 7.3.495 change the existing note example from:

“[Note: in particular, the name of an object, function or enumerator does not hide the
name of a class or enumeration declared in a different namespace. For example,

nanespace A{ class X { }; }
nanmespace B { void X(int); }
usi ng nanmespace A,
usi ng namespace B;

void f() {
X(1); /1 error: name X found in two nanespaces
}n
to:
“[Note: in particular, the name of an object, function or enumerator does not hide the
name of a class or enumeration declared in a different namespace. For example,
nanespace A {
class X { };
extern “C” int g();
extern “C++” int h();
namespace B {
void X(int);
extern “C” int g();
extern “C++" int h();
}
using namespace A,
using namespace B;
void f() {
X(2); !l error: name X found in two namespaces
g(); // okay: name g refers to the same entity
h(); // error: name h found in two namespaces
}H
Proposal #2:
Add anew paragraph to 17.3.1.2:

“Inclusion of the standard C and C++ headers may be done only at global scope.”

