J16/97-0089 = WG21/N1127
September 3, 1997
Dan Saks & William M. Miller

Relaxing Restrictions on Operatorsnew and delete

This document is a revision of J16/97-0056R1 = WG21/N1094, which was distributed in the post-London mailing. It differs from
that document only in the addition of a proposed modification in 3.7.3 [basic.stc.dynamic], addressing the concern that was
raised in London regarding the linkage conflict between a static allocation or deallocation function and its automatically-
predeclared counterpart.

In comment Ireland 1, theish National body requestede removal ofthe restriction
againstoperatorsnew anddelete being declaredtatic orinline . Although
there was nexplicit requirement ithe commenthat these operators ladlowed in
namespacecope, itseemed more consistent to retlat restriction asvell. The
following proposal implements these changes.

In 3.7.3[basic.stc.dynamic], replace the fitslf of paragraph 2 (through tHist of
implicitly-declared functions) with the following:

The library provides default definitionsfor theglobal allocation and
deallocation functions. Some global allocation and deallocation functions are
replaceable(18.4.1). Replacements of these functions are subject to the
requirements of the Onefinition Rule (3.2); aglobal definition ofone of
these functions replaces the corresponding version provided ifibriuey
(17.3.3.4).

The following allocation and deallocation functior{48.4) are implicitly
declared in global scope in each translation unit of a program:

void* operator new(std::size_t) throw(std::bad_alloc);
void* operator new[](std::size_t) throw(std::bad_alloc);
void operator delete(void*) throw();

void operator delete[](void*) throw();

That is, a reference to one of these functions from a poimthigh no
corresponding declaration is visible is treated as if the function were declared in
global scope with external linkageexample:

/I no declaration of operator new(std::size_t)
void f() {
int* p = new int; // uses global operator new

/I Error: already (implicitly) declared with external linkage:

static void* operator new(std::size_t) throw(std::bad_alloc) {
...

}

/I Internal linkage fine, no preceding use or declaration:

static void* operator new[](std::size_t) throw(std::bad_alloc) {
...

}

void g() {
int* g = new int[10]; /I uses static operator new(]

}

—end example

In 3.7.3.1 [basic.stc.dynamic.allocation], change the first sentence in paragraph 1 from:

An allocation functiorshall be a class membinction or a global function; a
program is illformed if an allocation function is declared in a namespeape
other than global scope or declared static in global scope.

to:

An allocation functionmay be alass member or a function at namespace
scope; a program if-formed if an allocation function is declaradine and
not static in global namespace scope.

In 3.7.3.2[basic.stc.dynamic.deallocation], change the first sentence in paragraph 1
from:

Deallocation functionshall be class membé&unctions or global functions; a
program is illformed if deallocation functiorere declared inamespace scope
other than global scope or declared static in global scope.

to:

A deallocation functiormay be alass member function or a function at
namespace scope; a program isoithied if a deallocation function is declared
inline and not static in global namespace scope.

In 5.3.4 [expr.new], add following the first sentence of paragraph 1:
The type of that object is tlalocated type
In the same section, replace paragraphs 9 through 11 with the following:

A new-expressiorobtains storage for the object bgalling an allocation
function(3.7.3.1). If thenew-expressioterminates by throwing an exception,
it may releasestorage bycalling a deallocation function(3.7.3.2). If the
allocated type is a non-array type, the allocation function’s naopeiator

new and the deallocation functionis|ame isoperator delete . If the
allocated type is an array type, the allocation functioaime isoperator
new[] and the deallocation function’s namejerator delete[]

A new-expressiorpasses the amount of space requested toaltbeation
function as the first argument of typtel::size_t . That argumenghall be
no less tharhe size ofthe objecbeingcreated ananay begreater than the
size ofthe objecbeingcreatedonly if the object is an array. If present, the
new-placemergupplies additional arguments to the allocation function call.

An implementation shalprovide default definitiondor theglobal allocation
functions (3.7.3, 18.4.1.1, 18.4.1.2). [Note: a C++ prograan provide
alternative definitions ofthese functions(17.3.3.4), and/orclass-specific
versions (12.5).]

In the same section, add the following after paragraph 12:

If the new-expressionbegins with a unary.:: operator, theallocation
function’s name isooked up in theglobal scope. Otherwise, if the allocated
type is a class typ& or an array thereof, the allocation functioname is
looked up in the scope of T. ftifiis lookupfails to find the name, or if the
allocated type isot aclass typethe allocation function’'same idooked up in
the context of th@ew-expressiomllowing the normal rules fonamelookup
(3.4.1),ignoring member functionghat might be found irexically-enclosing
class scopes. [Note:Argument-dependent namokup (3.4.2) is not
performed.] Overload resolution (13.3) selects the appropaiddeation
function.

In the same section, replace paragraphs 17 through 19 with the following:

If any part of the objecinitialization describedabove [Footnote: This may
include evaluating a new-initialization and/or calling a constructor.]
terminates by throwing an exception and a suitable deallocation function can be
found, the deallocation function called to freethe memory in which the
object wadeingconstructed, aftawhichthe exception continues to propagate

in the context of theew-expressianIf no unambiguous matching deallocation
function can be found, propagating the exceptioas notcause the object’s
memory to befreed. [Note:this is appropriate whethe called allocation
functiondoes notllocate memoryptherwise, it idikely to result in amemory

leak.]

If a new-expressioralls a deallocatiofunction, it passes thealue returned

from the allocation function call as the first argument of typel* . If
present, thenew-placemensupplies additional arguments ttte deallocation
function call.

If the new-expressiorbegins with a unary: operator, thedeallocation
function’s name isooked up in theglobal scope. Otherwise, if the allocated
type is a class typ€ or an array thereof, the deallocation functiamésne is
looked up in the scope df. If this lookupfails to find the name, or if the
allocated type isiot aclass type or arrathereof, the deallocatiofunction’s
name islooked up in the context of theew-expressioffollowing the normal
rules fornamelookup (3.4.1)jgnoring member functionthat might be found
in lexically-enclosing classcopes. Overload resolution (13.3)agplied to
select the appropriate deallocation function.

A declaration of placemenperator delete matches the declaration of a
placemenbperator new if it has thesame number of parameters and, after
parameter transformations (8.3.%3)] parameter types except the first are
identical. Ifthe deallocation function selected by overload resoldio@s not
match theplacemenbperator new called bythe new-expressiomwr if the
lookup for the deallocation function was ambiguous, no deallocktrmtion

will be called andhe memory in whichthe object wageing constructedwill

not be freed before the exception is propagated.

In the same section, delete paragraph 21.

In section 5.3.5 [expr.delete], delete paragraph 9 crashge the last sentence of
paragraph 8 from:

to:

Whenthe keyworddelete in adelete-expressiors preceded by thanary
operator, the global deallocation function is used to deallocate the storage.

Selection of the deallocation function to dadled when deleting a class object
or array thereof is described12.5. Fomon-class objects and arrays of non-
class objects, if the keywordklete in adelete-expressiois preceded by the
unary:: operator, theleallocation function’s name lisoked up in theglobal
scope; otherwise, theame idooked up in the context of thaelete-expression
following the nomal rules fomamelookup (3.4.1)jgnoring member functions
that might be found inexically-enclosing classcopes. If the result of the
lookup is ambiguous oimaccessible, or ithe lookup selects placement
deallocation function, the program is ill-formed.

In section 12.5 [class.free], delete paragraphs 1-3 and replace paragraphswitiand 8
the following:

If a delete-expressiorbegins with a unary: operator, thedeallocation
function’s name idooked up in theglobal scope. Otherwise, if thdelete-
expressionis used to deallocate an object whose static type hasgual
destructor, thedeallocation function is the one found by the lookup at the
definition ofthe dynamictype’s virtualdestructor (12.4)[Footnote: A similar
lookup is not needed for the array version of the delete operator because 5.3.5
requires that in this situation, the static type of the delete-expression-s
operand be the same as its dynamic typ@therwise, if thalelete-expression

is used to deallocate an object of clds®r array thereof, the static and
dynamictypes of the objecshall be identicabnd the deallocaticiunction’s
name idooked up in the scope @t If this lookupfails to findthe name, the
name idooked up in the context of tlaelete-expressiofollowing the normal

rules fornamelookup (3.4.1)jgnoring member functionthat might be found

in lexically-enclosing classcopes. If the result of the lookupaisibiguous or
inaccessible, or ithe lookup selects placement deallocation function, the
program is ill-formed.

