Document Numbers: X3J16/97-0063R1

WG21/N1101R1
Date: July 17, 1997

Reply To: Bill Gibbons
bill@gibbons.org

Core-lll Changes from CD2 Ballot Comments, Part 2

Introduction

Nonmatching lines (File ":original:basic"; Line 1360:1364; File ":modified:basic";
Line 1364:1368)

1358 CWT

1359 in the function call, there is a set of zero or more associated namespaces
1360 to be considered.

1361 The set of namespaces is determined entirely by the types of the function
1362 arguments.

1363 Typedef names used to specify the types do not contribute to this set.

1364 The set of namespaces are determined in the following way:

1364 and a set of zero or more associated classes to be considered.

1365 The sets of namespaces and classes is determined entirely by the types of the
1366 function arguments (and the namespace of any template template argument).
1367 Typedef names used to specify the types do not contribute to this set.

1368 The sets of namespaces and classes are determined in the following way:

B I o o B T I LI e M i i o o
1365 LI

1366 If

The following is a comparison of original and modified troff files for working papewonmatchi)ng lines (File ":original:basic"; Line 1368; File ":modified:basic"; Line

changes for Core lll, for clauses 3, 14 and 15.

Clause 3 [basic]

File #1: :original:basic
File #2: :modified:basic

Extra lines in 2nd before 1349 in 1st (File ":original:basic"; Line A1349; File
":modified:basic"; Line 1349:1350)

1347 .H3 "Argument-dependent name lookup" basic.lookup.koenig

1348 .ix "argument-dependent lookup”

1349 \" L7003 USA Core3 1.12 public comment 23 / 3.4.2 [basic.lookup.koenig]
1350 \"and 14.6.5 [temp.inject] Friend name lookup, as previously agreed.

B I o I o LI I o o o N o
1349 P B )
1350 When an unqualified name is used as the

Nonmatching lines (File ":original:basic"; Line 1354:1355; File ":modified:basic";

Line 1356:1359)

1352 in a function call (_expr.call_),

1353 other namespaces not considered during the usual unqualified look up

1354 (_basic.lookup.unqual_) may be searched; this search depends on the types of
1355 the arguments.

1356 (_basic.lookup.unqual_) may be searched, and nhamespace-scope friend function
1357 declarations (_class.friend_) not otherwise visible may be found.

1358 These modifications to the search depend on the types of the arguments

1359 (and for template template arguments, the namespace of the template
argument).

B s T s T o
1356 P
1357 For each argument type

X3J16/97-0063R1 WG21/N1101R1

1372:1373

1366 If

1367 CWT

1368 is a fundamental type, its associated set of namespaces is empty.

1372 is a fundamental type, its associated sets of namespaces and

1373 classes are both empty.

s B e 2 B o o
1369 LI

1370 If

Nonmatching lines (File ":original:basic"; Line 1372:1374; File ":modified:basic";

Line 1377:1380)

1370 If

1371 CWT

1372 is a class type, its associated namespaces are the namespaces
1373 in which the class and its direct and indirect base classes are
1374 defined.

1377 is a class type, its associated classes are the class itself

1378 and its direct and indirect base classes.

1379 Its associated namespaces are the namespaces in

1380 which its associated classes are defined.

s 2 2 o
1375 LI

1376 If

Nonmatching lines (File ":original:basic"; Line 1379; File ":modified:basic"; Line

1385:1387)

1377 CWT

1378 is a union or enumeration type, its associated namespace is the
1379 namespace in which it is defined.

1385 namespace in which it is defined. Ifitis a class member, its
1386 associated class is the member's class; else it has no associated
1387 class.

B L L S S

Pagel



1380 LI
1381 If

Nonmatching lines (File ":original:basic"; Line 1389; File ":modified:basic"; Line
1397)

1387 or an array of

1388 .CwWuU,

1389 its associated namespaces are the namespaces associated with

1397 its associated namespaces and classs are those associated with

B B
1390 .CWU.

1391 LI

Nonmatching lines (File ":original:basic"; Line 1394:1395; File ":modified:basic";

Line 1402:1403)

1392 If

1393 CWT

1394 is a pointer to function type, its associated namespaces are

1395 the namespaces associated with the function parameter types and the
namespaces

1402 is a pointer to function type, its associated namespaces and classes are
1403 those associated with the function parameter types and those

B e B B o
1396 associated with the return type.

1397 LI

Nonmatching lines (File ":original:basic"; Line 1402:1403; File ":modified:basic";

Line 1410:1411)

1400 is a pointer to @ member function of a class

1401 .CWX,

1402 its associated namespaces are the namespaces associated with the function

1403 parameter types and return type, together with the namespaces associated with

1410 its associated namespaces and classes are those associated with the function

1411 parameter types and return type, together with those associated with

+++++++
1404 .CWX.

1405 LI

Nonmatching lines (File ":original:basic"; Line 1410:1411; File ":modified:basic";
Line 1418:1419)

1408 is a pointer to a data member of class

1409 .CWX,

1410 its associated namespaces are the namespaces associated with the member type

1411 together with the namespaces associated with

1418 its associated namespaces and classes are those associated with the member

type

1419 together with those associated with

+HHH
1412 .CWX.

1413 LI

X3J16/97-0063R1 WG21/N1101R1

Nonmatching lines (File ":original:basic"; Line 1418:1422; File ":modified:basic";
Line 1426:1432)

1416 isa

1417 I template-id ,

1418 its associated namespaces are the namespaces in which the template is

defined,

1419 the namespaces

1420 associated with the types of the template arguments provided for template

1421 type parameters (excluding template template parameters), and the namespaces
1422 of any template template arguments.

1426 its associated namespaces and classes are the namespace in which the template
1427 is defined; for member templates, the member template's class;

1428 the namespaces and classes

1429 associated with the types of the template arguments provided for template

1430 type parameters (excluding template template parameters); the namespaces
1431 in which any template template arguments are defined; and the classes in

1432 which any member templates used as template template arguments are defined.
++++++++
1423 N[

1424 non-type template arguments do not contribute to the set of associated

Nonmatching lines (File ":original:basic"; Line 1436; File ":modified:basic"; Line

B e T L

1446:1448)

1434 When considering an associated namespace, the lookup is the same as the
lookup

1435 performed when the associated namespace is used as a qualifier

1436 (_namespace.qual_) except that

1446 (_namespace.qual_) except that:

1447 LI

1448 Any

1437 .l using-directive s

1438 in the associated namespace are ignored.

Extra lines in 2nd before 1439 in 1st (File ":original:basic"; Line A1439; File
":modified:basic"; Line 1451:1454)

B B e L B o S A

1437 .l using-directive s

1438 in the associated namespace are ignored.

1451 LI

1452 Any namespace-scope friend functions declared in

1453 associated classes are visible within their respective namespaces even if
1454 they are not visible during an ordinary lookup (_class.friend_).

1439 LE

1440 .H3 "Quialified name look up" basic.lookup.qual

Page 2



Clause 14 [template]

File #1: :original:template
File #2: :modified:template

Nonmatching lines (File ":original:template"; Line 88:99; File ":modified:template";

Line 88:104)
86 in that scope.
87 P
88 A non-inline function template, a non-inline member function template,
89 a non-inline member function of a class template or
90 a static data member of a class template is
91 called an
92 .I exported
93 template if its definition is preceded by the keyword
94 .CW export
95 or if it has been previously declared using the keyword
96 .CW export
97 in the same translation unit. Declaring a class
98 template exported is equivalent to declaring all of its non-inline function
99 members, static data members, member classes, and non-inline member templates
88 \" L3204 Germany 2 / 14p6
89 \" Clarify where the keyword "export" is required and/or allowed.
90 A namespace-scope declaration or definition of a non-inline function
template
91 a non-inline member function template, a non-inline member function of a
class
92 template or a static data member of a class template may be preceded by the
93 .CW export
94 keyword. If such a template is defined in the same translation unit in which
95 it is declared as exported, the definition is considered to be
96 .| exported.
97 The first declaration of the template containing the
98 .CW export
99 keyword must not follow the definition.
100 P
101 Declaring a class
102 template exported is equivalent to declaring all of its non-inline function
103 members, static data members, member classes, member class templates and
104 non-inline function member templates
+HHH
100 which are defined in that translation unit exported.
101 P

Extra lines in 2nd before 319 in 1st (File ":original:template”; Line A319; File
":modified:template"; Line 324:325)

317 .
318 .Cb
324 \"L3282 Germany 6 /14.1/7
325 \" Example was wrong; nontype pointer args may not be variables
B a2 B B I B B B
319 template<int a[5]> struct S { /* ... */ };
320 int v[5];

Nonmatching lines (File ":original:template"; Line 321:323; File
":modified:template”; Line 328)
319 template<int a[5]> struct S { /* ... */ };
320 int v[5];

X3J16/97-0063R1 WG21/N1101R1

321 int*p=

322 S<v> x; /7 fine
323 S<p>y; // also fine
328 S<v> x; // fine

e s o 2 B a2
324 Ce
325 .E]

Extra lines in 2nd before 388 in 1st (File ":original:template”; Line A388; File
":modified: template Line 393:396)

386 .H2 "Names of template specializations" temp.names
P

387
393 \" L3332 Germany 8/ 14.2p1 [temp.names] and 14.3p11 [temp.arg]
394 \" Change grammar in 14.2 to match text in 14.3p11 which says that
395 \" a template-argument-list may be empty.
396 \" Fixed in Lajoie's pre-London suggested changes to clause 14.
B o e B B L o
388 A template specialization (_temp.spec_) can be referred to by a
389 I template-id :

Nonmatching lines (File ":original:template"; Line 449; File ":modified:template”;

Line 458:463)
447 .CW reinterpret_cast
448 or
449 .CW const_cast
458 \" USA editorial comment, from core3 issue 3.29
459 .CW const_cast,
460 or which encloses the
461 .| template-argument s
462 of a subsequent
463 .I template-id
B o o o
450 is considered nested for the purpose of this description.
451 .Fe

Extra lines in 2nd before 468 in 1st (File ":original:template"; Line A468; File
":modified:template"; Line 482:484)
E]

466
467 P
482 \" L6924 USA Core3 1.2 core-765 / 14.2p4 [temp.names]
483 \" Clarify description and example of when the template
484 \" keyword is required.
B o L
468 When the name of a member template specialization appears after
469 .CW.

Nonmatching lines (File ":original:template"; Line 477:479; File
":modified: template Line 494:498)

475 .

476 ina

477 I qualified-id

478 that explicitly depends on a template-argument (_temp.dep_),

479 the member template name must be prefixed by the keyword template.

Page 3



494
495
496
497
498

I qualified-id ,

and the postfix-expression or qualified-id

explicitly depends on a template-argument (_temp.dep_),
the member template name must be prefixed by the keyword
.CW template .

B s T B o s T 2

480
481

Otherwise the name is assumed to name a non-template.
E[

Nonmatching lines (File ":original:template"; Line 486:492; File
":modified:template”; Line 505:518)
484

public:
485 template<size_t> X* alloc();
486 I3
487 void f(X* p)
488
489 X* pl = p->alloc<200>();
490 Il'ill-formed: < means less than
491
492 X* p2 = p->template alloc<200>();
505 template<size_t> static X* adjust();
506 I3
507 template<class T> void f(T* p)
508 {
509 T* pl = p->alloc<200>();
510 /l'ill-formed: < means less than
511
512 T* p2 = p->template alloc<200>();
513 Il fine: < starts explicit qualification
514
515 T::adjust<100>();
516 /l'ill-formed: < means less than
517
518 T::template adjust<100>();
+++++++H
493 /I fine: < starts explicit qualification
494 }

Extra lines in 2nd before 541 in 1st (File ":original:template”; Line A541; File
":modified: template" Line 567:577)

539 I class-name
540 (_class_).
567 \"L7171 USA Core3 2.8 N1053 issue 8.11 / 14.2 [temp.names]
568 \" Specializations are not found by name lookup on their
569 \" template-id, since template-id's themselves do not participate
570 \"in name Iookup.
571 Even though a
572 .| template-id
573 is a name, it is not an identifier and is not found by name lookup.
574 N[
575 However, the template name portion of a template-id is found by
576 name lookup.
577 .N

B i I B L I I B B T
541 .H2 "Template arguments" temp.arg
542 P

Extra lines in 2nd before 598 in 1st (File ":original:template”; Line A598; File

X3J16/97-0063R1 WG21/N1101R1

":modified:template"; Line 635:636)
596 .E]
597 P

635 \"L3112 Canada 11/ 14.3p3 [temp.arg]
636 \" Fixed in Lajoie's pre-London suggested changes to clause 14.
s B B e  pwas o
598 A
599 .I template-argument

Extra lines in 2nd before 697 in 1st (File ":original:template”; Line A697; File
":modified:template"; Line 736:740)
695 to bring it to the type of its corresponding

696 .| template-parameter .

736 \" L3282 Germany 6 / 14.1p7 [temp.param] and 14.3 [temp.arg]

737 \" Implicit array-to-pointer and function-to-pointer conversions on template
args.

738 \" L7094 USA Core3 2.2 core-759 / 14.3p6 [temp.arg]

739 \" Reference derived-to-base "conversions" on nontype template args;

740 \"no longer a problem because the conversions have been removed.

B I T o B T L I I B o N B I
697 For a non-type
698 .I template-parameter

Nonmatching lines (File ":original:template"; Line 700:706; File
":modified:template”; Line 744:749)

698 .| template-parameter

699 of pointer type,

700 qualification conversions (_conv.qual_), the derived-to-base pointer
701 conversions and the pointer conversions to
702 .CW void*
703 (_conv.ptr_)
704 are applied to an expression used as a
705 .I template-argument
706 to bring it to the type of its corresponding
744 qualification conversions (_conv.qual_),
745 the array-to-pointer conversion (_conv.array_) and the function-to-pointer
746 conversion (_conv.func_)
747 are applied to an expression used as a
748 .I template-argument
749 as needed to bring it to the type of its corresponding
B I T o B B L o o o e 2 o
707 .| template-parameter .

708 For a non-type

Nonmatching lines (File ":original:template"; Line 711:712; File
":modified:template”; Line 754)

709 .| template-parameter
710 of pointer to member type,
711 qualification conversions (_conv.qual_) and the base-to-derived pointer to
712 member conversions (_conv.mem_)
754 qualification conversions (_conv.qual_)
B B B I I L L I I L B
713 are applied to an expression used as a
714 .I template-argument

Page4



Nonmatching lines (File ":original:template"; Line 720:723; File
":modified:template"; Line 762:765)

718 .| template-parameter

719 of reference type,

720 the expression used as a

721 I template-argument

722 shall be reference-compatible (_dcl.init.ref_) with the type of the

723 corresponding

762 qualification conversions (_conv.qual_)

763 are applied to an expression used as a

764 I template-argument

765 to bring it to the underlying non-reference type of its corresponding
B L B o

724 .| template-parameter .

725

Nonmatching lines (File ":original:template"; Line 731:736; File
":modified:template"; Line 773:780)

729 X<ai> xi; // array to pointer and qualification conversions
730
731 struct Base {/* ... */ };
732 struct Derived : Base {F..*}
733 template<Base& b> struct Y {F..*Y
734 Derived d;
735 Y<d>yd; //template-argument is reference-compatible
736 /I with template-parameter
773 struct Y {/*...*};
774 template<c0nst Y&b>struct Z {/*...*/ };
775 Y;
776 Z<y>z; [l qualification conversion
77
778 template<int (&pa)[5]> struct W { /* ... */ };
779 int b[5];
780 W<b>w; // no conversion
B B B B
737 .Ce
738 .E]

Extra lines in 2nd before 774 in 1st (File ":original:template”; Line A774; File
":modified:template”; Line 818:821)
El

772
773 P
818 \" L3308 Germany 7/ 14.3p9 [temp.arg]
819 \" Neither local types nor types compounded from them may be used as
820 \" template type arguments.
821 \" Fixed in Lajoie's pre-London suggested changes to clause 14.
B B T B B
774 A local type, a type with no linkage, an unnamed type or a type compounded
775 from any of these types shall not be used as a

Nonmatching lines (File ":original:template"; Line 1152; File ":modified:template";

Line 1200:1204)
1150 .E]
1151 P

X3J16/97-0063R1 WG21/N1101R1

1152 A specialization of a template conversion operator is referenced in

1200 \"L7171 USA Core3 2.8 N1053 issue 8.11/ 14.2 [temp.names]

1201 \" Specializations of operator conversion functions are not found by

1202 \" lookup on their return type, since specializations are not found

1203 \" by direct lookup.

1204 A specialization of a template conversion operator is declared in

++++++
1153 the same way as a non-template conversion operator that converts to

1154 the same type.

Extra lines in 2nd before 1183 in 1st (File ":original:template”; Line A1183; File
":modified:template"; Line 1235:1241)

1181 NJe

1182 P

1235 A specialization of a template conversion operator is not found by name
1236 lookup; rather, as with a

1237 I template-id

1238 (_temp.names_), it is found through the template itself.

1239 A using-declaration in a derived class cannot refer to a specialization
1240 of a template conversion operator in a base class.

1241
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1183 If more than one conversion template can produce the required type,
1184 the partial ordering rules (_temp.func.order_) are used to select the

Extra lines in 2nd before 1366 in 1st (File ":original:template”; Line A1366; File
":modified:template"; Line 1425:1432)

1364 implicit instantiation to take place, in every translation unit in which such
a

1365 use occurs.

1425 \" L7052 USA Core3 1.19/ 14.5.4 [temp.class.spec]

1426 \" Specialization declarations must be in scope when used in template
instantiations.

1427 When a partial specialization is used within

1428 the instantiation of an exported template, and the unspecialized template
name

1429 is non-dependent in the exported template, a declaration of

1430 the partial specialization must be declared before the definition of the
exported

1431 template, in the translation unit containing that definition.

1432

B I B o L I T o B o T I i o o o
1366 Each class template partial specialization is a distinct template and

1367 definitions shall be provided for the members of a template partial

Nonmatching lines (File ":original:template"; Line 1407:1410; File
":modified:template"; Line 1474:1478)
N]

1405

1406 P

1407 A class template partial specialization shall be declared in the class or
1408 namespace containing the primary template declaration or in a namespace
1409 of which the class or namespace containing the primary template

1410 declaration is a member.

1474 \" L6939 USA N1053 Core3 1.4 issue 6.49 and 6.53 item 3/ 14.5.4p4
[temp.class.spec]

1475 \" Clarify that class template partial specializations in member classes may

Page5



1476 \" also be declared at namespace scope.

1477 A class template partial specialization may be declared or redeclared in any

1478 namespace scope in which its definition may be defined (_temp.class_ and

_temp.mem_).

B i e L o o o B S i
1411 E[

1412 .Cb

Nonmatching lines (File ":original:template"; Line 1414; File ":modified:template";
Line 1482:1484)

1412 .Cb

1413 template<class T> struct A {

1414 template<class T2> struct B { };

1482 class C{

1483 template<class T2> struct B { };

1484 '

+H+++++
1415 k

1416

Nonmatching lines (File ":original:template"; Line 1417:1419; File
":modified:template”; Line 1487:1491)

1415 L

1416

1417 template<class T> template<class T2>

1418 struct A<T>::B<T2*> { }; // partial specialization of A<T>::B<T2>
1419 A<short>::B<int*> absip;  // uses partial specialization

1487 /I partial specialization of A<T>::C::B<T2>

1488 template<class T> template<class T2>

1489 struct A<T>::C::B<T2*>{};

1490

1491 A<short>::C::B<int*> absip;  // uses partial specialization

B o B L L S
1420 .Ce
1421 .E]

Extra lines in 2nd before 1423 in 1st (File ":original:template™; Line A1423; File
":modified:template”; Line 1495:1534)

1421 .

1422 P

1495 \"L7156 USA Core3 2.7 N1053 issue 6.58 / 14.5.4 [temp.class.spec]
1496 \" using-declarations refer to primary templates, not class partial

specalizations
Partial specialization declarations themselves are not found by name lookup.

1498 Rather, when the primary template name is used, any previousy declared
partial

1499 specializations of the primary template are also considered. One consequence
is

1500 thata

1501 .l using-declaration

1502 which refers to a class template does not restrict the set of partial

specializations
1503 which may be found through the

1504 .l using-declaration .
1505 E[
1506 .Cb

X3J16/97-0063R1 WG21/N1101R1

1507 namespace N {
1508 template<class T1, class T2> class A { }; // primary template
1509 }
1510
1511 using N::A; // refers to the primary template
1512
1513 namespace N {
1514 template<class T> class A<T, T*> { }; // partial
specialization
}
1516
1517 A<int,int*> a; // uses the partial specialization, which is found
through
1518 /I the using declaration which refers to the primary
template
1519 .E]
1520 \"L7143 USA Core3 2.6 N1053 issue 6.53 / 14.5.4p4 [temp.class.spec]
1521 \" Clarification of the partial specialization of member class template.
1522 P
1523 When a member class template of a class template is partially specialized,
1524 the partial specializations are considered declared in all instances
generated
1525 from the enclosing class template. When primary member class template is
1526 explicitly specialized for a given specialization of the
1527 enclosing class, none of the partial specializations of the original
1528 primary member class template are considered declared in that specialization
of the
1529 enclosing class.
1530 P
1531 \" L6947 USA Core3 1.5 N1053 issue 6.51 / 14.5.4p5 / [temp.class.spec]
1532 \" Restored the less restrictive wording for nontype template arguments
1533 \"in class template partial specializations.
1534 \" Fixed in Lajoie's pre-London suggested changes to clause 14.
B o o L
1423 A non-type argument is non-specialized if it is the name of a non-type
1424 parameter.

Nonmatching lines (File ":original:template”; Line 1444:1445; File
":modified:template"; Line 1556:1559)

1442 .E]

1443 LI

1444 The type of a specialized nontype argument shall not be dependent on another
1445 type parameter of the specialization.

1556 \" L6987 USA Core3 1.9 Editorial box 6 / 14.5.4p6 [temp.class.spec]

1557 \" Fix restrictions on nontype template args in specialization arg lists.

1558 The type of a template parameter corresponding to a specialized nontype
argument

1559 shall not be dependent on a parameter of the specialization.

B e L B o
1446 E[

1447 .Cb

Extra lines in 2nd before 1514 in 1st (File ":original:template”; Line A1514; File
":modified:template"; Line 1628:1631)

1512 .H4 "Partial ordering of class template specializations" temp.class.order
1513 P

1628 \" L6955 USA Core3 1.6 N1053 issue 6.52 / 14.5.4.2 [temp.class.order]
1629 \" Reword the partial ordering rules so that they apply to template

1630 \" nontype parameters as well as template type parameters.

Page6



1631 \" Fixed in Lajoie's pre-London suggested changes to clause 14.

+++++++H
1514 For two class template partial specializations,

1515 the first is at least as specialized as the second if, given the following

Extra lines in 2nd before 1635 in 1st (File ":original:template"; Line A1635; File
":modified:template"; Line 1753)

1633 .Ce

1634 .E]

1753 \" L7156 USA Core3 2.7 N1053 issue 6.58 /

B I o T i I o i I B L L o
1635 .H3 "Function templates" temp.fct

1636 P

Extra lines in 2nd before 1700 in 1st (File ":original:template"; Line A1700; File
":modified: template" Line 1819:1822)

1698 X "template overload resolution

1699 .|x "function template partial ordering

1819 \" L6970 USA Core3 1.8 N1053 issue 6.56 / 14.5.5.2 [temp.func.order]

1820 \" Add additional contexts, e.g. taking the address of a function,

1821 \" where partial ordering may be used to select among function templates.

1822 \" Fixed in Lajoie's pre-London suggested changes to clause 14.

B s e o L
1700 If a function template is overloaded,

1701 the use of a function template specialization might be ambiguous because

Extra lines in 2nd before 1893 in 1st (File ":original:template™; Line A1893; File
":modified:template”; Line 2016:2018)

1891

1892 P

2016 \"L7106 USA Core3 2.3 core-737 / 14.6p5 [temp.res]

2017 \" Allow "typename" in a function template return type.

2018 \" Fixed in Lajoie's pre-London suggested changes to clause 14.

B o
1893 The keyword
1894 .CW typename

Extra lines in 2nd before 1903 in 1st (File ":original:template"; Line A1903; File
":modified:template"; Line 2029:2030)

1901 for the definition of a static member of a class template or of a class
nested

1902 within a class template.

2029 \" L6932 USA Core3 1.3 core-736 parts 2&3 / 14.6p5 [temp.res]
2030 \" No change, the working paper was correct.

B e B B B B e i o
1903 The keyword
1904 .CW typename

Extra lines in 2nd before 1919 in 1st (File ":original:template”; Line A1919; File
":modified:template”; Line 2047:2050)

1917 (_temp.dep_) is implicitly assumed to be a type name.

1918 P

2047 \"L7016 USA Core3 1.14 core-737 / 14.6p6 [temp.res]

2048 \" Clarify cases where "typename" is needed even to refer to the

X3J16/97-0063R1 WG21/N1101R1

2049 \" current template.

2050 \" Fixed in Lajoie's pre-London suggested changes to clause 14.

B o e s L
1919 Within the definition of a class template or within the definition of a

1920 member of a class template, the keyword

Nonmatching lines (File ":original:template"; Line 2081:2084; File
":modified:template"”; Line 2213:2219)

2079 .H3 "Locally declared names" temp.local

2080 P

2081 Within the scope of a class template, the unqualified name of the

2082 template, when not followed by

2083 CW«<,

2084 is equivalent to the name of the template followed by the

2213 \" L7180 USA Core3 2.9 Editorial box 8 / 14.6.1p2 [temp.local]

2214 \" Equivalence of A and A<T> within definition of class template A.

2215 \" Most of this was in Lajoie's pre-London suggested changes to clause 14.
2216 Within the scope of a class template, when the name of the template is
2217 neither qualified nor followed by

2218 CW<,

2219 it is equivalent to the name of the template followed by the

B I T LA e i o o o
2085 .| template-parameter s

2086 enclosed in

Extra lines in 1st before 2223 in 2nd (File ":original:template”; Line 2088:2093;
File ":modified:template"; Line A2223)

2086 enclosed in

2087 CW<>,

2088 N[

2089 the equivalence within the scope of a class template between the name
2090 of the template and the corresponding

2091 I template-id

2092 does not apply when the name of the template is qualified.

2093 .N]e

B I o o B T LI o o o o o o
2094 E[

2095 the constructor for

Nonmatching lines (File ":original:template"; Line 2115:2118; File
":modified:template"; Line 2244:2247)
E]

2113

2114 P

2115 Within the scope of a class template specialization, the name of the

2116 specialization, when not followed by

2117 CW<,

2118 is equivalent to the name of the specialization

2244 Within the scope of a class template specialization, when the name of the
2245 template is neither qualified nor followed by

2246 CW<,

2247 it is equivalent to the name of the template

B I o o B B LI o o o e i 1 o SR o o o
2119 followed by the
2120 I template-argument s

Page7



Extra lines in 2nd before 2732 in 1st (File ":original:template"; Line A2732; File
":modified:template”; Line 2861:2863)
P

2730 |

2731 .ix "point~of instantiation

2861 \" L6992 USA Core3 1.10 Editorial box 11 / 14.6.4.1 [temp.point]

2862 \" Remove an unnecessary rule in the definition of points of instantiation.

2863 \" Fixed in Lajoie's pre-London suggested changes to clause 14.

B B L e
2732 For a function template specialization, a member function template

2733b specialization, or a specialization for a member function or static data

member

Extra lines in 2nd before 2793 in 1st (File ":original:template"; Line A2793; File
":modified:template"; Line 2925:2926)

2791 definition context or the template instantiation context are found.

2792 LE

2925 \" L6996 USA Core3 1.11 Editorial box 12 / 14.6.4.2 [temp.dep.candidate]

2926 \" The suggestion in the ballot comment was not accepted.

B i s B L
2793 If the call would be ill-formed or would find a better match had the lookup

2794 within the associated namespaces considered all the function declarations

with

Nonmatching lines (File ":original:template"; Line 2798:2816; File
":modified:template”; Line 2932:2937)

2796 not just considered those declarations found in the template definition and
2797 template instantiation contexts, then the program has undefined behavior.
2798 .H4 "Conversions" temp.dep.conv

2799 P

2800 Any standard conversion sequence (_over.ics.scs_) may be applied to an
2801 argument in a function call that depends on a template argument.

2802 A user-defined conversion sequence (_over.ics.user_) may be applied to an
2803 argument in a function call that depends on a template argument, but
2804 the user-defined conversion in this sequence shall either be a conversion
2805 function that is a member function of the class type of the argument, or
2806 shall be a constructor of the class type that is the target type of the

2807 user-defined conversion sequence.

2808 The user-defined conversion function thus selected shall be found either in
the

2809 template definition context or in the template instantiation context.

2810 N

2811 The set of candidate functions is formed first, before

2812 conversions are considered, so the possible conversions do not affect
2813 the set of candidate functions.

2814 Nle

2815 .H3 "Friend names declared within a class template” temp.inject

2816 P

2932 \" L3381 Germany 12/ 14.6.4.3 [temp.dep.conv]

2933 \" The entire section (one paragraph) was deleted because it is redundant.
2934 .H3 "Friend names declared within a class template" temp.inject

2935 P

2936 \" L7003 USA Core3 1.12 public comment 23 / 3.4.2 [basic.lookup.koenig]
2937 \"and 14.6.5 [temp.inject] Friend name lookup, as previously agreed.

B e
2817 Friend classes or functions can be declared within a class template.

2818 When a template is instantiated, the names of its friends are treated

X3J16/97-0063R1 WG21/N1101R1

Nonmatching lines (File ":original:template"; Line 2822:2824; File
":modified:template”; Line 2943:2947)

2820 instantiation.

2821 P

2822 The names of friend functions of a class template specialization

2823 are found by the usual lookup rules, including the rules for associated
2824 namespaces (_basic.lookup.koenig_).\*f

2943 As with non-template classes, the names of namespace-scope friend
2944 functions of a class template specialization are not visible during

2945 an ordinary lookup unless explicitly declared at namespace scope

2946 (_class.friend_). Such names may be found under the rules for associated

2947 classes (_basic.lookup.koenig_).\*f

B o A s e
2825 .Fs

2826 Friend declarations do not introduce new names into any scope, either

Nonmatching lines (File ":original:template"; Line 2832:2835; File
":modified:template"; Line 2955:2958)

2830 .Cb

2831 template<typename T> class number {

2832 ...

2833 friend number<T> gcd(const number<T>& X,

2834 const number<T>&y){...}
2835 ...

2955 number(int);

2956 ...

2957 friend number gcd(number& x, number& y) { /* ... */ }
2958 Il...

B e o B e
2836 I3

2837 .Ce

Nonmatching lines (File ":original:template"; Line 2841:2843; File
":modified:template"; Line 2964:2969)

2839 void g()

2840 {

2841 number<double> a, b;

2842

2843 a=gcd(a,b); //looks inside number<double> for gcd

2964 number<double> a(3), b(4);

2965 ...

2966 a=gcd(a,b); //finds gcd because number<double> is an
2967 /I associated class, making gcd visible
2968 /I in its namespace (global scope)
2969 b =gcd(3,4); /ill-formed; gcd is not visible

s
2844 }

2845 .Ce

Nonmatching lines (File ":original:template"; Line 2898:2901; File
":modified:template"; Line 3024:3034)

2896 A specialization is a class, function, or class member that is either
2897 instantiated or explicitly specialized (_temp.expl.spec ).
2898 A template that has been used in a way that requires a specialization of its

Page8



2899 definition causes the specialization to be implicitly instantiated unless
2900 a declaration for the explicit specialization appears before the

2901 specialization is used.

3024 \"L7052 USA Core3 1.19/ 14.5.4 [temp.class.spec]

3025 \" Specialization declarations must be in scope when used in template
instantiations.

3026 If a template is explicitly specialized then that explicit specialization
shall be

3027 declared before the first use of that specialization that would cause an
3028 implicit instantiation to take place, in every translation unit

3029 in which such a use occurs.

3030 When a specialization for which an explicit specialization exists is used
within

3031 the instantiation of an exported template, and the unspecialized template
name

3032 is non-dependent in the exported template, a declaration of

3033 the explicit specialization must be declared before the definition of the
exported

3034 template, in the translation unit containing that definition.

B e S
2902 P
2903 No program shall explicitly instantiate any template more than once,

Extra lines in 2nd before 3054 in 1st (File ":original:template™; Line A3054; File
":modified:template”; Line 3187:3192)

3052 .Ce

3053 .E]

3187 \" USA editorial comment, from core3 issue 3.31

3188 \" Instantiating a class template does not automatically instantiate

3189 \" a static data member.

3190 P

3191 The implicit instantiation of a class template does not cause any static data
3192 members of that class to be implicitly instantiated.

B o T i I I R B
3054 P

3055 If a function template or a member function template specialization is used

in

Extra lines in 2nd before 3065 in 1st (File ":original:template"; Line A3065; File
":modified:template”; Line 3204:3212)

3063 virtual member function of a class template that does not require

3064 specialization.

3204 \" USA editorial comment, from core3 issue 3.32

3205 \" A name referenced in a default argument is not "used" unless the default
3206 \"argument is used.

3207 A reference to a template specialization in a default argument

3208 shall not cause the template to be implicitly instantiated except that a

3209 class template may be instantiated where its complete type is needed to
determine

3210 the correctness of the default argument. The use of a default argument in a
3211 function call causes specializations in the default argument to be implicitly
3212 instantiated.

B B o o
3066 Implicitly instantiated class and function template specializations are
placed

Extra lines in 2nd before 3201 in 1st (File ":original:template”; Line A3201; File

X3J16/97-0063R1 WG21/N1101R1

":modified:template"; Line 3349:3351)

3199 function (_special_), the program is ill-formed.

3200 P

3349 \"L7042 USA Core3 1.17 / 14.7.2p4 [temp.explicit]

3350 \" The comment asked if an explicit instantiation directive implied

3351 \" the inclusion model of template compilation. No, it does not. No

change.

B B o
3201 The definition of a non-exported function template,

3202 a non-exported member function template,

Extra lines in 2nd before 3745 in 1st (File ":original:template”; Line A3745; File
":modified:template”; Line 3896:3905)

3743 argument list for these function templates.

3744 .NJe

3896 \" L7048 USA Core3 1.18/ 14.8.1 [temp.arg.explicit]

3897 \"WG21 decided not to address this issue except to document that
3898 \" argument-dependent lookup does not apply in this context.

3899 P

3900 N[

3901 Argument dependent lookup (_basic.lookup.koenig_) is not done when
3902 explicit function template arguments are provided. If the function

3903 template name is not visible in the current scope, the name must

3904 be explicitly qualified.

3905 .N]e

B I o o B T LI o o o o o o
3745 .H3 "Template argument deduction" temp.deduct

3746 P

Extra lines in 2nd before 3863 in 1st (File ":original:template”; Line A3863; File
":modified:template"; Line 4024:4027)

3861 .CWA

3862 via a qualification conversion (_conv.qual ).

4024 \" L0230 Australia 3 / 14.8.2p4 [temp.deduct]

4025 \" The comment was a request for an extension: allowing template

4026 \" type deduction to take user defined conversions into account.

4027 \" The requested extension was not added.

s 2 2 o
3863 LI

3864 If

Page9



Clause 15 [except]

File #1: :original:except
File #2: :modified:except

Extra lines in 2nd before 254 in 1st (File ":original:except"; Line A254; File
":modified:except"; Line 254:265)

B o L L O S BBy

252 statement, that passes control to another handler for

253 the same exception, so the temporary remains.

254 \" L0588 France 11/ 15.1p4 [except.throw]

255 \" Clarify the point of destruction of the exception object temporary
256 When the last handler being executed for the exception exits by
257 any means other than

258 .CW throw;

259 the temporary object is destroyed and the implementation may
260 deallocate the memory for the temporary object; any such deallocation
261 is done in an unspecified way. The destruction occurs immediately
262 after the destruction of the object declared in the

263 .| exception-declaration

264 in the handler.

265 P

254 If the use of the temporary object can be eliminated without

255 changing the meaning of the program except for

Extra lines in 2nd before 272 in 1st (File ":original:except"; Line A272; File
":modified:except"; Line 284:286)

270 .ix "rethrow
271 X "reraise
284 \" L7009 USA Core3 1.13 public comment 26 / 15.1p5 [except.throw]
285 \" Clarify that rethrow does not create a new exception, but
286 \" reactivates the old one.
B i I I o o B
272 A
273 I throw-expression

Nonmatching lines (File ":original:except"; Line 274:275; File ":modified:except";

Line 289: 296)
272
273 .I throw-expression
274 with no operand rethrows the exception being handled
275 without copying it.
289 with no operand rethrows the exception being handled.
290 The exception is reactivated with the existing temporary;
291 no new temporary exception object is created. The exception
292 is no longer considered to be caught; therefore, the value
293 of
294 .CW uncaught_exception()
295 will again be
296 .CW true .
+++++++H
276 E[
277 code that must be executed because of an exception yet cannot

Nonmatching lines (File ":original:except"; Line 324:325; File ":modified:except";
Line 345:351)

322

of their construction.

X3J16/97-0063R1 WG21/N1101R1

323 P

324 An object that is partially constructed will have destructors executed only
325 for its fully constructed sub-objects.
345 \" L0615 France 12 / 15.2p2 [except.ctor]
346 \" L7197 USA Core3 2.11 core-769 / 15.2p2 [except.ctor]
347 \" Clarify that stack unwinding destroys all fully constructed subobjects.
348 An object that is partially constructed or partially destroyed will have
349 destructors executed for all of its fully constructed subobjects,
350 that is, for subobjects for which the constructor has completed execution
351 and the destructor has not yet begun execution.

B T I B L e I B B B o
326 Should a constructor for an element of an automatic array throw an
327 exception, only the constructed elements of that array will be destroyed.

Extra lines in 2nd before 353 in 1st (File ":original:except"; Line A353; File
":modified:except"; Line 379:384)

351 I stack
352 lunwinding .\("
379 N[
380 If a destructor called during stack unwinding exits with an exception,
381 .CW terminate
382 is called (_except.terminate_). So destructors should generally catch
383 exceptions and not let them propagate out of the destructor.
384 N
B I o o B o B B LI o o o o
353 .H2 "Handling an exception" except.handle
354 P

Extra lines in 2nd before 552 in 1st (File ":original:except"; Line A552; File
":modified:except"; Line 584:586)

550 is ill-formed.
551 P
584 \" L0702 France 13/ 15.3p15 [except.handle]
585 \" According to the French representatives, this ballot comment
586 \"is not correct. No action has been taken on this item.
s B
552 If a return statement appears in a handler of the
553 .I function-try-block

Extra lines in 2nd before 565 in 1st (File ":original:except"; Line A565; File
":modified:except"; Line 600:608)

563 I function-try-block

564 (Cstmt.return_).

600 \" L0718 France 14 / 15.3p16 [except.handle]

601 \" Flowing off the end of a function try block.

602 Flowing off the end of a

603 .I function-try-block

604 is equivalent to a

605 .CW return

606 with no value;

607 this results in undefined behavior in a value-returning function

608 (_stmt.return_)
s e 2 L o

565 P
566 When the

Page 10



Nonmatching lines (File ":original:except"; Line 1031; File ":modified:except"; Line

1075:1094)

1029 .H3 "The \f7uncaught_exception()\fP function" except.uncaught

1030 P

1031 See _lib.uncaught_.

1075 \" USA editorial comment, from core3 issue 3.25

1076 \" The description of "uncaught_exception" is moved from [lib.uncaught]
1077 \"to here, and corrected. (The replacement of the description

1078 \"in [lib.uncaught] with a cross-reference to [except.uncaught] is an
1079 \" editorial change.)

1080 The function

1081 .Cb

1082 bool uncaught_exception()

1083 .Ce

1084 returns

1085 .CW true

1086 after completing evaluation of the object to be thrown until completing
1087 the initialization of the

1088 .| exception-declaration

1089 in the matching handler (_lib.uncaught_). This includes stack unwinding.
1090 If the exception is rethrown (_except.throw_),

1091 .CW uncaught_exception()

1092 returns

1093 .CW true

1094 from the point of rethrow until the rethrown exception is caught again.

B s o s e o o O

1032
1033

.H2 "Exceptions and access" except.access
P

X3J16/97-0063R1 WG21/N1101R1

Page 11



