History:

Doc. no.: J16/97-0008

WG21/N1046
Date: 28 January 1997
Project: Programming Language C++
Reply to: Beman Dawes
beman@esva.net

Libraries Issues List for CD2 - Version 0

Version 0: Distributed at the start of the Nashua meeting.

Open Issues

Clause 17 - Library Introduction
Clause 18 - Language Support

Issue:
Section:
Status:
Description:

CD2-18-001 O f set macro needs additional restrictions
18.1
Open

The offsetof macro (18.1) is restricted to work on POD-structs and POD-unions. So far
so good. Two problems:

1. A POD-struct is allowed to have static data and non-virtual member functions. Surely
they should be explicitly excluded from use with the of f set of macro.

2. A POD-struct is alowed to have reference members, as of the July 1996 meeting. The
usua implementation of the macro isthis:

#define offsetof (s, m (size_t)(& ((s *)0)->n))
That doesn’'t work if 'm’ is areference member. | don’t think that one ordinary macro can
work for both reference and non-reference members. That means the compiler will have

to resort to something like
#define offsetof (s, __builtin_offsetof(s, nm

where __bui | ti n_of f set of issome compiler magic that does the right thing. Do
we really want to make compilers jump through those hoops? | don’t think you can do
much with the value of the offset of areference member anyway, so | suggest
disallowing taking its offset.

Proposed Resolution:

Requester:
References:

97-0008

Modify the 18.1 section referring to of f set of to say:

"The result of applying the of f set of macro to afield which isastatic data
member, afunction member, or which has a reference type is undefined."

"Undefined" will allow existing implementations to continue to be vaid. If we require
error detection, compilers will have to jump through hoops to recognize the of f set of
macro, since by the time the macro is expanded the fact that invalid code came from
"of f set of " islost.

Steve Clamage <clamage@taumet.Eng.Sun.COM>
lib-5249

1 N1046

Clause 19 - Diagnostics
Clause 20 - Utilities
Clause 21 - Strings

| ssue CD2-21-001 basic_string element
Section: 21.34

Status: Open

Description:

This clause says that the reference returned by the non- const version of operator[] is
invalid after "any subsequent call to c_str(), data(), or any non- const member function
for the object." Thiswould seem to make expressions such as

foo(s[a], s[b])
invalid, where sisnot const, as the second call to operator|[] would invaidate the
reference returned by the first call to operator[]. In genera, it seems unreasonable that a
call to operator[] would invalidate the reference returned by a previous call to operator|].

Andrew Koenig questions in lib-5251 whether the following might be invalid:
s(I] =s[jl;

Proposed Resolution:
Matt Austern discusses several possible resolutionsin lib-5250.

Regquester: Kevin S. Van Horn <kevin.s.vanhorn@iname.com>

References: [ib-5248, 1ib-5250, lib-5251, lib-5252

| ssue CD2-21-002 basi c_stri ng member requirenon-existenttraits: : eos()

Section: 21.3.4[lib.string.access|, 21.3.6 [lib.string.ops] (2 places), 27.6.1.2.3
[lib.istream::extractors] (2 places), 27.6.2.7 [lib.ostream.manip]

Status: Open

Description:

Several basic_string member functions are defined to require traits::eos().

Unfortunately, character traits do not have an eos() member, either in the requirements
table, or in the provided specializations.

Proposed Resolution:
Nathan Myersin lib-5247: "Y es, member eos() was removed; usechar_type() as end-of -
string where it is needed. We need to fix the Draft where it mentions eos()."

Regquester: Hans-Juergen Boehm <boehm@mti.sgi.com>
References: lib-5245, lib-5247

Clause 22 - Localization
Clause 23 - Containers

| ssue CD2-23-001 Priority_queue<> missing typedef for compare_type
Section: 23.2.3.2[lib.priority.queue]

Status: Open

Description:

std::priority_queue<> takes atemplate parameter "Compare", afunction object, and
defines a protected member with it, but there is no typedef for that parameter.

Proposed Resolution:

97-0008 2 N1046

Add to the public interface of priority_queue<>in 23.2.3.2 [lib.priority.queue] the
following definition:

t ypedef Conpare conpare_type;

Requester: Nathan Myers < ncm@cantrip.org>

References: lib-5246

| ssue CD2-23-002 Gratuitous pointer and const_pointer typedefs
Section: 23,21

Status: Open

Description:

The standard containers provide pointer and const_pointer typedefs, but these do not
appear in any requirement or function signature for any container, including

basic_string.
Proposed Resolution:
Remove thesetypedefs.
Regquester: Greg Colvin <Greg@imr.imrgold.com>

References:

Clause 24 - lterators

I ssue: CD2-24-001 Undefined lifetime of references from iterators.
Section: 24

Status: Open

Description:

Chapter 24 places no regquirements on the lifetime of the reference returned by *iterator.
For example, given a dereferenceable input iterator p on type int, must the following
assertion be true?

const int&r = *p;

int i =r;
p++,
assert(i ==r1);
Proposed Resolution:
The assertion should not be required to be true. The *iterator operation might return a
temporary.
Requester: Greg Colvin <Greg@imr.imrgold.com>
References:

Clause 25 - Algorithms
Clause 26 - Numerics
Clause 27 - Input/Output

| ssue: CD2-27-001 Incorrect post condition for ios_base::failure
Section: 27.4.2.1.1[lib.ios::failure]

Status: Open

Description:

The problem that existed with the other exception classes still existsin ios_base::failure
(Nov '96 WP [lib.ios::failure]):

97-0008 3 N1046

explicit failure(const string& nsg);

Effects: Constructs an object of class failure, initializing the base class with
exception(nsg).

Postcondition: what () == nsg. str ()

Proposed Resolution:
The postcondition needs to be changed to:

Postcondition: st rcnp(what (), nsg.c_str()) ==

Requester: Kevlin Henney <kevlin@two-sdg.demon.co.uk>
References:

97-0008 4 N1046

