
97-0008 1 N1046

Doc. no.: J16/97-0008
WG21/N1046

Date: 28 January 1997
Project: Programming Language C++
Reply to: Beman Dawes

beman@esva.net

Libraries Issues List for CD2 - Version 0

History:
Version 0: Distributed at the start of the Nashua meeting.

Open Issues

Clause 17 - Library Introduction
Clause 18 - Language Support

Issue: CD2-18-001 Offset macro needs additional restrictions
Section: 18.1
Status: Open
Description:

The offsetof macro (18.1) is restricted to work on POD-structs and POD-unions. So far
so good. Two problems:

1. A POD-struct is allowed to have static data and non-virtual member functions. Surely
they should be explicitly excluded from use with the offsetof macro.

2. A POD-struct is allowed to have reference members, as of the July 1996 meeting. The
usual implementation of the macro is this:

#define offsetof(s, m) (size_t)(&(((s *)0)->m))
That doesn’t work if ’m’ is a reference member. I don’t think that one ordinary macro can
work for both reference and non-reference members. That means the compiler will have
to resort to something like

#define offsetof(s,m) __builtin_offsetof(s, m)
where __builtin_offsetof is some compiler magic that does the right thing. Do
we really want to make compilers jump through those hoops? I don’t think you can do
much with the value of the offset of a reference member anyway, so I suggest
disallowing taking its offset.

Proposed Resolution:
Modify the 18.1 section referring to offsetof to say:

"The result of applying the offsetof macro to a field which is a static data
member, a function member, or which has a reference type is undefined."

"Undefined" will allow existing implementations to continue to be valid. If we require
error detection, compilers will have to jump through hoops to recognize the offsetof
macro, since by the time the macro is expanded the fact that invalid code came from
"offsetof" is lost.

Requester: Steve Clamage <clamage@taumet.Eng.Sun.COM>
References: lib-5249

97-0008 2 N1046

Clause 19 - Diagnostics
Clause 20 - Utilities
Clause 21 - Strings

Issue: CD2-21-001 basic_string element
Section: 21.3.4
Status: Open
Description:

This clause says that the reference returned by the non-const version of operator[] is
invalid after "any subsequent call to c_str(), data(), or any non-const member function
for the object." This would seem to make expressions such as

foo(s[a], s[b])
invalid, where s is not const, as the second call to operator[] would invalidate the
reference returned by the first call to operator[]. In general, it seems unreasonable that a
call to operator[] would invalidate the reference returned by a previous call to operator[].

Andrew Koenig questions in lib-5251 whether the following might be invalid:
s[I] = s[j];

Proposed Resolution:
Matt Austern discusses several possible resolutions in lib-5250.

Requester: Kevin S. Van Horn <kevin.s.vanhorn@iname.com>
References: lib-5248, lib-5250, lib-5251, lib-5252

Issue: CD2-21-002 basic_string member require non-existent traits::eos()
Section: 21.3.4 [lib.string.access], 21.3.6 [lib.string.ops] (2 places), 27.6.1.2.3

[lib.istream::extractors] (2 places), 27.6.2.7 [lib.ostream.manip]
Status: Open
Description:

Several basic_string member functions are defined to require traits::eos().

Unfortunately, character traits do not have an eos() member, either in the requirements
table, or in the provided specializations.

Proposed Resolution:
Nathan Myers in lib-5247: "Yes, member eos() was removed; use char_type() as end-of-
string where it is needed. We need to fix the Draft where it mentions eos()."

Requester: Hans-Juergen Boehm <boehm@mti.sgi.com>
References: lib-5245, lib-5247

Clause 22 - Localization
Clause 23 - Containers

Issue: CD2-23-001 Priority_queue<> missing typedef for compare_type
Section: 23.2.3.2 [lib.priority.queue]
Status: Open
Description:

std::priority_queue<> takes a template parameter "Compare", a function object, and
defines a protected member with it, but there is no typedef for that parameter.

Proposed Resolution:

97-0008 3 N1046

Add to the public interface of priority_queue<> in 23.2.3.2 [lib.priority.queue] the
following definition:

typedef Compare compare_type;

Requester: Nathan Myers < ncm@cantrip.org>
References: lib-5246

Issue: CD2-23-002 Gratuitous pointer and const_pointer typedefs
Section: 23, 21
Status: Open
Description:

The standard containers provide pointer and const_pointer typedefs, but these do not
appear in any requirement or function signature for any container, including
basic_string.

Proposed Resolution:
Remove these typedefs.

Requester: Greg Colvin <Greg@imr.imrgold.com>
References:

Clause 24 - Iterators

Issue: CD2-24-001 Undefined lifetime of references from iterators.
Section: 24
Status: Open
Description:

Chapter 24 places no requirements on the lifetime of the reference returned by *iterator.
For example, given a dereferenceable input iterator p on type int, must the following
assertion be true?

const int& r = *p;
int i = r;
p++;
assert(i == r);

Proposed Resolution:
The assertion should not be required to be true. The *iterator operation might return a
temporary.

Requester: Greg Colvin <Greg@imr.imrgold.com>
References:

Clause 25 - Algorithms
Clause 26 - Numerics
Clause 27 - Input/Output

Issue: CD2-27-001 Incorrect post condition for ios_base::failure
Section: 27.4.2.1.1 [lib.ios::failure]
Status: Open
Description:

The problem that existed with the other exception classes still exists in ios_base::failure
(Nov ’96 WP [lib.ios::failure]):

97-0008 4 N1046

explicit failure(const string& msg);

Effects: Constructs an object of class failure, initializing the base class with
exception(msg).

Postcondition: what() == msg.str()

Proposed Resolution:
The postcondition needs to be changed to:

Postcondition: strcmp(what(), msg.c_str()) == 0

Requester: Kevlin Henney <kevlin@two-sdg.demon.co.uk>
References:

