Docunent Nunbers: X3J16/96- 0214
WE21/ N1032
Dat e: Novenber 13, 1996
Reply To: Bill G bbons
bi | | @i bbons. org

Core-111 Wrking Paper Changes (Mtions and Editorial)

1. darify the semantics of "uncaught_exception".

(Rationale: it is safe to throw an exception from unexpected (because the exception is
consi dered handl ed at entry to unexpected), but not fromterninate (because termnate
nmay not exit.) Since uncaught_exception is intended to indicate whether it is safe to
throw an exception, the semantics associated with entering unexpected and termnate
need to be adjusted. |ssue raised by 96-0186R1l/ NLOO4R1.)

Move we amend the working paper as follows:
Qurrent wording in 15. 1p6:

An exception is considered fini shed when the correspondi ng
catch clause exits.

Revi sed wor di ng:

An exception is considered finished when the correspondi ng
catch clause exits or when unexpected() exits after being entered
due to a throw

Qurrent wording in 15.5. 1pl:

—when a exception handl i ng mechani sm after conpleting eval uation of the
object to be thrown but before conpleting the initialization of the
exception-declaration in the matching handler, calls a user function
that exits via an uncaught exception,

Revi sed wor di ng:

- when an exception handl i ng mechani sm after conpleting evaluation of the
object to be thrown but before either conpleting the initialization of the
exception-declaration in the matchi ng handl er or entering unexpected()
due to the throw, calls a user function that exits via an uncaught
excepti on,

Qurrent wording in 18.6.3.3p2 for ternmnate():

Effects: Calls the termnate_handler function in effect imrediately
after evaluating the throwexpression (18.6.3.1).

Revi sed wor di ng:

Effects: Calls the termnate_handler function in effect imrediately
after evaluating the throw expression (18.6.3.1).

Effects: If termnate() is called by the inplenentation,

uncaught _exception() returns true when called at any point after
entry to termnate().

Qurrent wording in 18.6.4 for uncaught _exception():

Returns: true after conpleting evaluation of a throw expression until
conpleting initialization of the exception-declaration in the matching

handl er (15.5.3). This includes stack unwi nding (15.2).
Revi sed wor di ng:

Returns: true after conpleting evaluation of a throw expression until
either conpleting initialization of the exception-declaration in the
mat ching handl er (15.5.3) or entering unexpected() due to the throw
or after entering terninate() for any reason other than an explicit
call totermnate(). [Note: this includes stack unwi nding (15.2).]

2. Correct the semantics of "dynam c_cast".

(Rationale: it was the intent that access checking in dyanam c_cast mmc the checking
whi ch woul d be done by a single static cast (for direct downcasts) or a pair of static
casts to the nost derived type and then to the result type (for cross-casts). The
current wording does not do this, and al so has an unintended bug al |l owi ng unsafe
direct downcasts in some situations. Core issue 549.)

Move we arend the working paper as follows:
Qurrent wording in 5.2 7p8:

The run-time check |ogically executes like this: If, in the nost
derived object pointed (referred) to by v, v points (refers) to a
public base class sub-object of a T object, and if only one object
of type T is derived fromthe sub-object pointed (referred) to by v,
the result is a pointer (an Ivalue referring) to that T object.
Gherwise, if the type of the nost derived object has an unanbi guous
public base class of type T, the result is a pointer (reference) to
the T sub-object of the nost derived object.

Revi sed wor di ng:
The run-time check |ogically executes |ike this:

- If, in the nost derived object pointed (referred) to by v, v points
(refers) to a public base class sub-object of a T object, and if only
one object of type T is derived fromthe sub-object pointed (referred)
to by v, the result is a pointer (an Ivalue referring) to that T object.

- Gherwise, if v points (refers) to a public base class sub-object of
the nost derived object, and the type of the nost derived object has

an unanbi guous base class of type T, the result is a pointer (reference)
to the T sub-object of the nmost derived object.

Qurrent wording in 5.2. 7pl0:
class A { virtual void f(); };

class B { virtual void g(); };
class D: public virtual A private B {};

void g()
{
D d;
B* bp = (B*)&d; [// cast needed to break protection
A* ap = &d; I/ public derivation, no cast needed
D& dr = dynam c_cast <D&(*bp); // succeeds
ap = dynam c_cast <A*>(bp); /1 succeeds
bp = dynam c_cast <B*>(ap); /]l fails
ap = dynami c_cast <A*>(&dr); /'l succeeds
bp = dynam c_cast <B*>(&dr); [l fails
}

Revi sed wor di ng:

class A{ virtual void f(); };

class B { virtual void g(); };
class D: public virtual A private B {};

void g()
{
D d;
B* bp = (B*)&; [// cast needed to break protection
A* ap = &d; I/ public derivation, no cast needed
D& dr = dynamnic_cast<D8&>(*bp); // fails
ap = dynam c_cast <A*>(bp); [l fails
bp = dynam c_cast <B*>(ap); [l fails
ap = dynam c_cast <A*>(&dr); /'l succeeds
bp = dynam c_cast <B*>(&dr); [l fails
}

3. Qarify the semantics of throw ng an exception object of array or function type, as
fol | ows:

(Rationale: initializing the handl er in an exception-declaration is intended to
parallel initializing the paraneter in a function call. But the handl er

type is not known at the point of the throw, and there is no way to initialize
the exception tenporary if the thrown expression has array or function type.

So the array-to-pointer and function-to-poi nter conversions should be done at the
throw and the correspondi ng adj ustnents shoul d be nade to the handl er type.

Core issue 678.)

Move we amend the worki ng paper as fol |l ows:
Qurrent wording in 15. 1p3:

A throw expression initializes a tenporary object of the static
type of the operand of throw, ignoring the top-level cv-qualifiers
of the operand’' s type, and uses that tenporary to initialize the
appropriatel y-typed variabl e named in the handl er.

Revi sed wor di ng:

A throw expression initializes a tenporary object, the type of which
is determined by renmoving any top-level cv-qualifiers fromthe static
type of the operand of throw and adjusting the type from“array of T
or “function returning T" to “pointer to T" or “pointer to function
returning T,” respectively. The tenporary is used to initialize the
appropriatel y-typed variabl e named in the handl er.

New par agr aph between 15. 3pl and 15. 3p2:
A handl er of type "array of T' or "function returning pointer to T"

is adjusted to be type "pointer to T" or "pointer to function
returning T', respectively.

4, darify when class tenplates are instantiated during a "trial parse".

(Rationale: tenplate-ids used as qualifiers nust be instantiated to determ ne
whether the qualified nane is a type. So the working paper note to the
effect that instantiation is not done in a trial parse is incorrect.

The proposed resol uti on makes any programfor which it matters ill-formed.
Core issue 671.)

Move we arend the working paper as follows:
Qurrent wording in 6.8p3:

The di sanbi guation is purely syntactic; that is, the nmeani ng of
the nanes occurring in such a statenent, beyond whet her they are

type-ids or not, is not used in or changed by the di sanbi guati on.
D sanbi guati on precedes parsing, and a staterent di sanbi guated as
a declaration may be an ill-formed declaration. [Note: because
the disanbiguation is purely syntactic, tenplate instantiation
does not take place during the disanbi guation step.]

Revi sed wor di ng:

The di sanbi guation is purely syntactic; that is, the meani ng of
the nanes occurring in such a statenent, beyond whether they are
type-ids or not, is not used in or changed by the di sanbi guati on.
dass tenplates appearing in qualifiers are instantiated as
necessary to determine if the qualified nane is a type-id.

D sanbi guati on precedes parsing, and a staterent di sanbi guated as

a declaration may be an ill-formed declaration. If, during parsing,
a nane in a tenplate paraneter is bound differently than it woul d
be bound during a trial parse, the programis ill-formed. No

diagnostic is required. [Note: this can occur only when the nane
is declared earlier in the declaration.]

5. Editorial change to restore intended interaction of default argunents and using-
decl arati ons.

(Rational e: the working paper was changed in a way not intended by a notion about
default arguments. The original intent is restored.)

Qurrent wording n 8. 3. 6p9:

Wien a declaration of a function is introduced by way of a using
declaration (7.3.3), any default argument information associated with
the declaration is inmported as well. If the function is redecl ared
thereafter in the namespace with additional default arguments, the
inported declaration is not affected.

Revi sed wor di ng:

Wien a declaration of a function is introduced by way of a using
declaration (7.3.3), any default argument information associated with
the declaration is made known as well. |If the function is redecl ared
thereafter in the namespace with additional default argurents, the
addi tional argunents are al so made known through the using declaration.

6. Aarify when overl oad resol ution causes class tenplate instantiation.

(Rational e: the working paper inplies that every possible conversion of an argunent
to a potential parameter nmust be considered. This can result in a massive nunber
of class tenplate instantiations, nost of which can usually be avoi ded by a

careful inplenentation of the overload resol ution al gorithm (because a function is
known to be nonviable or not the best match through information about ot her
pararmeters. Core issue 676.)

Move we arend the working paper as fol |l ows:

Rermove the editorial box #14 in 14.7.1p3, and add a new paragraph in its
pl ace:

If the overload resolution process can determine the correct function to
call without instantiating a class tenplate definition, it is unspecified
whether that instantiation actually takes place. [Exanple:

tenpl ate <class T> struct S {
operator int();
b

void f(int);

void f(S<int>g&);

void f(S<float>); // instantiation of S<float> allowed
/1 but not required

void g(S<int>& sr) {
f(sr); /1 instantiation of S<int> allowed
/1 but not required

h

- end exanpl e]

7. Qarify the set of associated nanmes used for argurent-dependent nare | ookup.

(Rational e: the working paper does not address how any non-type argunents and
tenplate tenplate argunents in a tenplate-id affect the set of associated nares.
Core issues 686 and 703.)

Move we amend the worki ng paper as fol | ows:
Add the following footnote to 3.4.2p2, after "...be considered;":

The set of namespaces is determned entirely by the types of the
argunents. Typedef nanes used to specify the types do not
contribute to this set.

Qurrent wording in 3.4.2p2:

—If Tis atenplate-id, its associated namespaces are the
namespace of the tenplate and the nanespaces associated with
the type of tenplate argunents.

Revi sed wor di ng:

- If Tis atenplate-id, its associ ated namespaces are the
namespaces of the tenplate, the nanespaces associated with
the types of the tenplate arguments provided for tenplate
type paraneters (excluding tenplate tenpl ate parameters), and
the nanespaces of any tenplate tenpl ate argunents.

8. Editorial change to clarify a description of exception type matching.

(Rationale: there were two ways to interpret the text. It was clear to
Core-111 which one was intended.)

Qurrent wording in 15.3/2:
A handler is a match for a throw expression with an object of type Eif
—the handler is of type cvl T* cv2 and Eis a pointer type that can be
converted to the type of the handl er by a standard pointer conversion
(4.10) not involving conversions to pointers to private or protected or
anbi guous cl asses, or a qualification-conversion (4.4), or a
conbi nati on of these two.
Revi sed wor di ng:
A handler is a match for a throw expression with an object of type Eif

—t he handler is of type cvl T* cv2 and Eis a pointer type that can be
converted to the type of the handl er by a conbination of

- a standard pointer conversion (4.10) not involving conversions
to pointers to private or protected or anbi guous cl asses

- aqualification conversion

9. darify that menber tenplates do not suppress inplicit copy/assign functions.

(Rationale: The autonmatic declaration of inplicit copy constructors and copy assi gnnent
operators should not be affected by the possibility of a menber tenpl ate specialization
meeting the requirenents for a copy constructor or copy assignment operator. Issue 8.3
in 96-0158/ N0976.)

Move we arend the working paper as follows:
Qurrent wording in 12.8p2:

A constructor for class Xis a copy constructor if its first paraneter
is of type X& const X& volatile X& or const volatile X& and either
there are no other paraneters or else all other paraneters have default
argunents (8.3.6).

Revi sed wor di ng:

A non-tenpl ate constructor for class Xis a copy constructor if its first
paraneter is of type X& const X& volatile X& or const volatile X& and
either there are no other paraneters or else all other paraneters have
default arguments (8.3.6). [Footnote: Because a tenplate constructor is
never a copy constructor, the presence of such a tenpl ate does not

suppress the inplicit declaration of a copy constructor. Tenplate
constructors participate in overload resolution with other constructors,

i ncluding copy constructors, and a tenpl ate constructor may be used to copy
an object if it provides a better match than other constructors.]

Qurrent wording in 12.8p9:

A user-decl ared copy assi gnment operator X :operator=is a non-static
nmenber function of class X with exactly one parameter of type X X&
const X& volatile X& or const volatile X&

Revi sed wor di ng:

A user-decl ared copy assi gnment operator X :operator=is a non-static
non-tenpl ate nenber function of class X with exactly one paraneter of
type X, X& const X& volatile X& or const volatile X& [Footnote:
Because a tenpl ate assignnent operator is never a copy assignment
operator, the presence of such a tenplate does not suppress the inplicit
declaration of a copy assignnent operator. Tenpl ate assignment operators
participate in overload resolution with other assignment operators,

i ncl udi ng copy assi gnnent operators, and a tenpl ate assi gnnment operat or
may be used to copy an object if it provides a better natch than other
assi gnrment operators.]

10. Assune a dependent qualified nane is a type in sone additional contexts.

(Rationale: There are to two contexts where a qualified name is assumed to be a type,
and the typenane keyword is neither necessary nor permtted to be applied to the nane.
The two contexts are qualifiers (e.g. Bin A:B:C and el aborated nanes

(e.g. Bin struct A°-:B). But there are also two contexts where a qualified nane nust
be a type nane, and the typenane keyword is not permtted, yet the name is not assuned
to be a type nane. (That is, typename is both required and forbi dden.) These contexts
are base class specifiers and nenber/base initializers. These two cases should be nade
to behave like the first two, i.e. typename is assuned. Core issue 736.)

Move we amend the working paper as foll ows:
Add a new par agraph between 14.6p3 ad 14. 6p4:
The keyword typename is not permtted in a base-specifier or in a

meminitializer. |In these contexts a qualified-nane that depends on a
tenpl ate parameter is inplicitly assumed to be a type nane.

11. Editorial change to clarify that “friend class T" is not permtted.
(Rationale: This is a frequently asked question. Core issue 738.)
Qurrent wording in 7.1.5. 3p5:

If the identifier resolves to a typedef-nane or a tenpl ate type-paraneter,
the el aborat ed-type-specifier is ill-forned.

Revi sed wor di ng:

If the identifier resolves to a typedef-nane or a tenpl ate type-paraneter,

the el aborated-type-specifier is ill-formed. [Note: This inplies that,
within a class tenplate with a tenpl ate type-parameter T, the declaration
"friend class T;" is ill-formed.]

12. darify that declarations of references to functions and pointers to menbers
may have excepti on-specifications.

(Rationale: It was an oversight that these cases were left out. GCore issue 740.)
Move we amend the worki ng paper as fol |l ows:
Qurrent wording in 15. 4pl:

An exception-specification shall appear only on a function decl arat or
ina function or pointer declaration or definition.

Revi sed wor di ng:
An exception-specification shall appear only on a function decl arator

in a function, pointer, reference, or pointer-to-nenber declaration or
definition.”

13. Qarify that when a pointer to menber is dereferenced, the class types associ ated
with both the object and the pointer to nenber nust be conpl ete.

(Rationale: If the classes are different, they must be conplete to performrequired
conversions. Even if the classes are the sane, allow ng the class to be inconplete
woul d provide little additional functionality and mght overly constrain sone

i npl ement ati ons of pointers to nenbers. Core issue 644.)

Move we anend the worki ng paper as foll ows:
Qurrent wording in 5.5p2 and 5. 5p3:
The binary operator .* binds its second operand, which shall be of
type “pointer to nenber of T to its first operand, which shall be
of class T or of a class of which T is an unanbi guous and accessi bl e
base class. The result is an object or a function of the type
specified by the second operand.

The binary operator ->* binds its second operand, which shall be of

type “pointer to nenber of T" to its first operand, which shall be
of type “pointer to T" or “pointer to a class of which T is an
unanbi guous and accessi bl e base class.” The result is an object or
a function of the type specified by the second operand.

Revi sed wor di ng:

The binary operator .* binds its second operand, which shall be of
type “pointer to nenber of T (where T is a conpletely defined class
type) toits first operand, which shall be of class T or of a class

of which T is an unanbi guous and accessi bl e base class. The result

is an object or a function of the type specified by the second operand.

The binary operator ->* binds its second operand, which shall be of
type “pointer to nenber of T (where T is a conpletely defined class
type) to its first operand, which shall be of type “pointer to T or
“pointer to a class of which T is an unanbi guous and accessi bl e base
class.” The result is an object or a function of the type specified by
the second operand.

14. Editorial

change to clarify that types used in exception-specifications

must be conpl et e.

(Rationale: W decided that types used in exception-specifications nust be

compl ete, but the working paper is not consistent on this point.)

Qurrent wording in 15.4pl:

A type denoted in an exception-specification shall not
denot e an inconpl ete type.

Qurrent wording in 15.4p7:

An exception-specification can include identifiers that
represent inconplete types.

Revi sed wordi ng in 15. 4p7:

An exception-specification shall not include identifiers that
represent inconpl ete types.

15. Editorial change to add "export" to the list of keywords.

(Rationale: the keyword list is not correct.)

Qurrent wording in 2.11pl table 3:

asm do inline short typei d
aut o doubl e i nt si gned t ypenarne
bool dynam c_cast | ong si zeof uni on

br eak el se nut abl e static unsi gned
case enum nanespace static_cast usi ng
catch explicit new struct vi rtual
char extern oper at or switch voi d

cl ass fal se private tenpl ate vol atile
const fl oat pr ot ect ed this wchar _t
const _cast for public t hr ow while
conti nue friend register true

def aul t goto reinterpret_cast try

del ete if return t ypedef

Revi sed wor di ng:

(sane table with "export" added)

16. Correct problens in the tenplate grammar.

(Rationale: Sone nontermnals defined in the working paper are not connected
to the rest of the grammar, i.e. the grammar does not say where they nay be
used. Also since the old use of "specialization” now neans "explicit

speci al i zation", the grammar shoul d be updated to account for this. A so,
the production for el aborated-type-specifier is split into tw places, and
so the inconplete first production is the only one which appears in the
grammar (due to the typesetting conventions. And the production for
full-tenplate-argunent-list is used in only one place and can be elimnated.)

Move we amend the working paper as fol |l ows:
Oiginal wording in 7pl:

decl arati on:
bl ock-decl arati on
function-definition
tenpl at e-decl arati on
| i nkage- speci fication
nanespace- definiti on

Revi sed wor di ng:

decl arati on:
bl ock- decl arati on
function-definition
tenpl at e-decl arati on
explicit-instantiation
explicit-specialization
| i nkage- speci fication
nanespace- defi ni tion

Oiginal wording in 7.1.5.3pl:
el abor at ed- t ype- speci fi er:
cl ass-key ::opt nested-name-specifier opt identifier
enum : : opt nest ed- nanme- specifier opt identifier
Revi sed wor di ng:
el abor at ed- t ype- speci fier:
cl ass-key ::opt nested-name-specifier opt identifier
enum : : opt nested-nane-specifier opt identifier
typenare ::opt nested-name-specifier identifier
typenane ::opt nested-name-specifier identifier < tenplate-argurent-list >
Oiginal wording in 14. 6p2:
A qualified-name that refers to a type and that depends on a
tenpl ate-parameter (14.6.2) shall be prefixed by the keyword
typenane to indicate that the qualified-name denotes a type.
el abor at ed- t ype- speci fier:
iyioehame .. opt nested-nane-specifier identifier full-tenplate-
argurrent -1 i st opt
full -tenpl ate-argunent-1ist:

< tenpl ate-argunent-list >

Revi sed wor di ng:

A qualified-name that refers to a type and that depends on a
tenpl ate-parameter (14.6.2) shall be prefixed by the keyword
typenane to indicate that the qualified-name denotes a type,
formng an el aborat ed-type-specifier (_dcl.type.elab).

el abor at ed- t ype- speci fi er:
typenare ::opt nested-name-specifier identifier
typenare ::opt nested-nane-specifier
identifier < tenplate-argunent-list >

Qiginal wording i'n 14 7.3pl:

speci al i zati on:
tenplate < > decl aration

Revi sed wor di ng:

explicit-specialization:
tenplate < > declaration

