
Doc. No.: X3J16/96-0186R1
WG21/N1004R1

Date: Nov 4, 1996
Project: Programming Language C++
Reply to: Servatius Brandt, SNI

<Servatius.Brandt@mch.sni.de>

 Proposal

to clarify the semantics of uncaught_exception()
 when called from unexpected() or terminate()

CONTENTS

1. Problems with the current definition
2. Solution for uncaught_exception() in unexpected()
3. Solution for uncaught_exception() in terminate()
4. Wording

1. Problems with the current definition
=======================================

The current definition of uncaught_exception() in 18.6.4 is:

 bool uncaught_exception();

 Returns: true after completing evaluation of a throw-expression until
completing initialization of the exception-declaration in the
matching handler (15.5.3). This includes stack unwinding (15.2).

 Notes: When uncaught_exception() is true, throwing an exception can
 result in a call of terminate (15.5.1).

There are three problems with this definition:

 a) An exception that results in unexpected() or terminate() being
 called is considered caught by unexpected() or terminate(), resp.
 (see 15.1 /6). However, uncaught_exception() returns true when
 called from the unexpected or terminate handler although (in case
 of unnested exceptions) there is no uncaught exception at all:

 #include <exception>
 #include <cassert>
 #include <cstdlib>

 void f() throw(int)
 {
 throw "x";
 }

 void uh()
 {
 assert(uncaught_exception() == true);
 exit(1);

 }

 int main() {
 set_unexpected(uh);
 f();
 }

 That is, the functionality and the name of uncaught_exception()
 disagree.

 b) The definition of uncaught_exception() says when it is true, but
 not when it is false. The reason is that exceptions may be nested,
 so that if one exception gets out of the range for that
 uncaught_exception() returns true, there may be another exception
 in that range. (An implementation can use a counter of how much
 exceptions are in this range.) Because this range is not ended
 when an exception is caught by unexpected(), uncaught_exception()
 remains true throughout the rest of the program:

 #include <exception>
 #include <cassert>
 #include <cstdlib>

 void f() throw(int)
 {
 throw "x";
 }

 void uh()
 {
 throw 1;
 }

 int main() {
 set_unexpected(uh);
 try { f(); } catch (int) { }

 // The "x" exception was not caught by a handler:
 assert(uncaught_exception() == true);

 try { throw; } catch (const char *) { }
 }

 Moreover, as an exception is "considered finished when the
 corresponding catch clause exits" (15.1 /6), the exception
 last recently caught and not finished is "x", so that the
 program exits normally (after catching the rethrown "x").

 c) The intention of uncaught_exception() is to detect situations
 where the throw of a new exception might cause abandoning of a throw
 for that uncaught_exception() returns true. Any such throw that is
 still active when terminate() is called, however, will never be
 abandoned when throwing a new exception because it is not allowed
 to exit the terminate handler by throwing an exception. That is,
 the uncaught_exception() return value is currently meaningless when
 called from terminate().

2. Solution for uncaught_exception() in unexpected()
==

If an exception violates an exception specification, unexpected() catches
the originally thrown exception and replaces it by a new one (except the
unexpected handler terminates the program). uncaught_exception(), when
called after entering unexpected() and before throwing any new exception,
should therefore return the same value as it would have returned when
called
just before throwing the original exception. In other words,
uncaught_exception() should return true after evaluation of the original
throw-expression until unexpected() is entered and after evaluation of the
throw-expression that exits unexpected() until completing initialization of
the exception-declaration in the matching handler. The value in between
is false normally but can be true when the originally thrown exception was
nested or when an exception is locally thrown and caught by a function
called from unexpected().

When unexpected() is not called due to a throw, but explicitly called by
the user, the value of uncaught_exception() should not be affected.

[For an implementation using a counter of uncaught exceptions, this means
to decrement it when calling unexpected() due to a throw but to leave it
untouched when unexpected() is explicitly called by the user.]

The exception caught by unexpected() should be considered finished when
unexpected exits by throwing an exception. Otherwise, the exception caught
by unexpected() could be rethrown later on (when unexpected() is no longer
active).

The changes proposed above solve problems a) and b).

3. Solution for uncaught_exception() in terminate()
===

The terminate handler is not allowed to exit by throwing an exception.
If it does, the behavior is undefined. uncaught_exception() cannot be
used to protect against doing so because when called from terminate() it
may return *false*: when terminate() was called because no exception could
be rethrown or when it was explicitly called by the user. However,
throwing
from terminate can easily be avoided by the user: by checking for a global
flag set in the terminate handler.

However, as uncaught_exception() can be used to avoid terminate being
called
at all, the same checks (in destructors and copy constructors) help to
protect
against terminate() being called from terminate() again.
uncaught_exception()
then needs only to care about throws started after terminate was called,
because throws started before will not be abandoned due to new exceptions,
as terminate() cannot be exited by throwing an exception. Therefore,
uncaught_exception() should return false after entering terminate() until
the next exception is thrown.

[For an implementation using a counter of uncaught exceptions, this means
to reset it to zero in terminate(), all the same if it is called due to a
throw by the implementation itself or explicitly called by the user.]

The change proposed above solves problems c).

4. Wording
==========

A) In 15.1 /6, last sentence

 "An exception is considered finished when the corresponding catch
clause
 exits."

change to

 "An exception is considered finished when the corresponding catch
clause
 or unexpected() exits."

B) Change 15.5.1, first bullet to:

 - when an exception handling mechanism, after completing evaluation of
 the object to be thrown but before completing the initialization of
 the exception-declaration in the matching handler or entering
 unexpected() or terminate() due to the throw, calls a user
 function that exits via an uncaught exception,

Here, "or entering unexpected() or terminate() due to the throw" has been
added. See also C). The footnotes need not be changed.

C) Change the definition of uncaught_exception in 18.6.4 to:

 bool uncaught_exception();

 Returns: true after completing evaluation of a throw-expression until
completing initialization of the exception-declaration in the
matching handler or entering unexpected() or terminate()
due to the throw. This includes stack unwinding (15.2).

 Notes: When uncaught_exception() is true, throwing an exception can
cause the abandoning of the throw of a presently uncaught exception.
Abandonment of such a throw results in a call of terminate (15.5.1).

Here,

 - the cross reference to 15.5.3 in "Returns:" has been removed because
 15.5.3 just refers to 18.6.4.

 - "or entering unexpected() or terminate() due to the throw" has been
 added. "due to the throw" ensures that the return value of
 uncaught_exception() is not affected when unexpected() is explicitly
 called during stack unwinding.

 - the definition does not say when the return value is false (because
of
 possibly nested exceptions). For the value false in terminate() see
D).

 - the "Notes:" have been changed to make clear why uncaught_exception()
 has its name. Furthermore, separating the wording "can cause the
 abandoning of the throw of a presently uncaught exception" from the
 statement that terminate() is called in case of abandonment shows

what
 problems resulting in a call of terminate() can be detected and that
 there still are other reasons for calling terminate() that cannot be
 detected by checking uncaught_exception(). The "Notes:"
intentionally
 speak about the *possibility of abandoning the throw* of an uncaught
 exception rather than just about the *existence* of an uncaught
 exception, because this is the interesting information and also holds
 when uncaught_exception() returns false in terminate() (see D)).

D) In 18.6.3.3 (terminate()) add to "Effects:":

 "uncaught_exception() returns false when called from the terminate
 handler until the next exception is thrown (see 18.6.4).

This must be added here rather than in 18.6.3.1 (terminate_handler),
because
the terminate handler could also be explicitly called by the user.

