X3J16/ 96- 0155R1 W21/ NO973R1

Wor ki ng Paper Changes for the Tenplate Conpil ati on Model
John W1 kinson, Silicon G aphics
Bj arne Stroustrup, AT&T

Note: NO973 (no revision) was an interimcopy distributed only at
the Stockhol m neeting and not included in any mailing.

The foll owi ng Wrking Paper changes are required for the new
tenpl ate conpil ati on nodel proposal

Part 1: The follow ng changes are required only to support separation.
2.11: Add keyword "export" to Table 3.
14 paragraph 3: Repl ace the granmar for tenpl ate-declaration by:

tenpl at e- decl arati on
export (opt) tenpl ate<tenpl ate-paraneter-list> declaration

14 paragraph 6: Delete
to have external |inkage
14: Add paragraph 7:

A non-inline tenplate function or a static data menber tenplate is
called an exported tenplate if its definition is preceded by the
keyword "export" or if it has been previously declared using the
keyword "export" in the same translation unit. Declaring a class
tenpl ate exported is equivalent to declaring all of its function
menbers, static data nmenbers, and nenber tenplates which are
defined in that translation unit exported.

Tenpl ates defined in an unnanmed nanespace shall not be exported
A templ ate shall be exported only once in a program An

i npl ementation is not required to diagnose a violation of this
rule. A non-exported tenplate that is neither explicitly
specialized nor explicitly instantiated nust be defined in every
translation unit in which it is inplicitly instantiated (14.7.1)
or explicitly instantiated (14.7.2); an exported tenpl ate need
only be declared (and not necessarily defined) in a translation
unit in which it is instantiated. A tenplate function declared
both exported and inline is just inline and not exported.

14: Add paragraph 8: (Note that this probably bel ongs with phases
of translation (2.1 paragraph ) instead of here.)

An inplenentation may require that a translation unit containing
the definition of an exported tenplate be conpil ed before any
other translation unit instantiating that tenplate.
14.7.2 paragraph 3: Repl ace
A definition of the static data nenber tenpl ate
by
A declaration of the static data menber tenplate
Repl ace box 29 by
The definition of a non-exported function tenplate or non-exported

data nmenber tenplate shall be present in every translation unit
in which it is explicitly instantiated.



Part 2: The followi ng changes are i ndependent of whether separation

is permitted or not:

Renove boxes 16 and 27

14.

14.

14.

14.

14.

6 paragraph 6: replace by
Three kinds of names can be used within a tenplate definition:

-- The nane of the tenplate itself, the names of the tenplate
paraneters (14.1), and nanes declared within the tenplate itself.

-- Nanes dependent on a tenplate paraneter (14.6.2).

-- Names from scopes with are visible within the tenplate definition
6.4: replace entire section by the foll ow ng:

6. 4 Dependent Nane Resol ution

In resol ving dependent nanmes, we consider nanes fromthe follow ng
sour ces:

-- Declarations that are visible at the point of definition of the
tenpl at e.

-- Declarations from nanmespaces associated with the types of the
function argunents, both fromthe instantiation context (14.6.4.1)
and fromthe definition context.

6.4.1 Point of Instantiation

If the instantiating reference of an inplicit tenplate function
specialization is a dependent function call, then the point of
instantiation of the specialization is the point of instantiation

of the tenplate function specialization containing the instantiating
ref erence

O herwi se, the point of instantiation of the specialization is the
poi nt imredi ately preceding the definition containing the instantiating
reference. (For the purposes of this definition we consider the
definition of a menber function defined within its class to follow

the outernost class definition containing the menber function
definition.)

By the instantiating context of a dependent call, we nmean the set of
declarations with external |inkage visible at the point of instantiation
of the tenplate function specialization containing the call

6. 4.2 Associ at ed Nanespaces

Wth each type T we associate a set of nanmespaces.

If Tis a fundanental type, its associated set of nanespaces is enpty.

If Tis a class type, its associ ated nanespaces are the nanmespaces

in which the class and its direct and indirect base classes are

defi ned.

If Tis a union or enuneration type, its associ ated nanespace is the
nanespace in which it is defined

If Tis a pointer to U, a reference to U, or an array of U, its
associ at ed nanespaces are the associ ated nanespaces of U



14.

14.

If Tis a pointer to function type, its associ ated nanmespaces are the
nanespaces of the function paranmeter types and of the return type.

If Tis a pointer to menber function of a class X, its associated
nanespaces are the namespaces of the function paranmeter and return
types, together with the nanespaces associated with X

If Tis a pointer to a data nmenber of a class X, its associated
nanespaces are the namespaces associated with X and the nanespaces
associ ated with the nmenber type

If Tis atenplate-id, its associ ated namespaces are the nanespace
of the tenplate and the nanespaces of the type tenplate argunents.

6. 4.3 Candi date Functions
One set of candidate functions cones fromthe definition context.

The others cone fromthe associ ated nanespaces of the types of the
argunents of the function call or of the operands of the operator
(14.6.4.2). Only names with external |inkage are considered.

Only functions actually declared in a given nanespace are consi dered,
not functions inported into the namespace by using directives,
or functions declared in enclosing nanespaces.

From t hese nanespaces only declarations fromthe definition context
or the instantiation context are considered. If a function with
external |inkage declared in one of these nanmespaces is a better
mat ch for a given dependent call than any of the functions decl ared
in that nanespace in either the definition or the instantiation
context, then the program has undefined behavi or.

6. 4.4 Conversions

Al'l standard conversions are pernitted in matching candi date functi ons.
A user-defined conversion nust be either a nmenber conversion fromits
argunent class, or a nenber constructor fromits result class. It nust
cone fromeither the definition context or the instantiation context.
(Note that the set of candidate functions is formed first, before
conversions are considered, so the possible conversions do not affect
the set of candidate functions.)



