Accredited Standards Committee X3 Doc No: X3J16/96-0125 W=21/ N0943
I nformation Processing Systens Dat e: May 28th, 1996
Operating under the procedures of Project: Programm ng Language C++
Aneri can National Standards Institute Ref Doc:
Reply to: Josee Lajoie
(j osee@net.ibm com

| Onject Model |ssues and Proposed Resol utions |

613 - What is the order of destruction of objects statically
initialized?

3.6.3 [basic.start.tern], para 1:
"These objects [initialized objects of static storage duration
decl ared at bl ock scope or namespace scope] are destroyed in the
reverse order of the conpletion of their constructors."

G ven:
struct A{ int i; ~AQ0); };
Aa={1}
If an inplementation decides to initialize a.i "statically",
when rmust the inplenentation destroy a.i? i.e. what does it nean
in such cases to destroy a.i "in reverse order of the conpletion of

their constructors"?

Possi bl e sol uti ons:
Solution 1):
It is unspecified in which order these objects are destroyed.

Sol ution 2):
These objects are destroyed after the objects declared in the same
translation unit and initialized dynam cally are destroyed; they are
destroyed in the reverse order in which their definition appears in
the translation unit.

Sol ution 3):
These objects are destroyed as if they had a constructors: the
destruction for such an object follows the destruction of objects
|l ater defined in the sane translation unit but precedes the
destruction of objects defined earlier in the sane translation unit.
i.e.

struct C {
aA);
}_~C();
struct D {
() ;
~D();

}1
struct X {

d is destroyed before x, x is destroyed before c.

Pr oposed resol ution:

Adopt 3).
| believe solution 3) is the nost intuitive for users.

I do not believe the costs of inplementing 3) are | arge enough to
justify inplenmenting one of the other solutions.

3.6.3 para 1 needs to be nodified to say:

"These objects [initialized objects of static storage duration
decl ared at bl ock scope or namespace scope] are destroyed in the
reverse order of the conpletion of their constructor or, if such
obj ects do not have constructors, in the reverse order of the
appearance of their definition."

639 - What is the lifetinme of declarations in conditions?

Jerry Schwarz asks the follow ng:

>

> struct T { T(int); ~T(); operator bool () const; /*...*/ };
>

> void f(int i)

> {

> while (Tt =1i) { /* do sonething with "t’ */ }

> }

>

> How often is t constructed/destroyed?

Anot her exanpl e:
for (T *p = first
T *next = p->next();
p = next)
{ p->val =1, }

How often i s next constructed/ destroyed?

Possi bl e sol uti ons:
Sol ution 1):
Constructed and destructed at each iteration of the | oop.

Sol ution 2):
Only once, when the loop is entered/exited, making the | oop
equi val ent to:

Tt =i;
while (t) { /* do sonething with "t’ */ }

Proposed resol ution:
I have a slight preference for solution 1).
Variables in conditions are "internal" to the loop and it seens
to make the nost sense if they are initialized/ destroyed at every
iteration of the | oop.

Add at the end of 6.4[stnt.select] paragraph 3:

"An object defined by a declaration in a condition is initialized
each time the condition is evaluated. |If this object is of a
class type with a non-trivial destructor, the object is destroyed
at the end of the loop, at every iteration of the |oop."

635 - local static variable initialization and recursive function calls

6. 7[stmt.dcl] para 4:

"A local object with static storage duration not initialized with
an integral constant-expressionis initialized the first tine
control passes conpletely through its initialization."

Neal Gafter asks:

>
>

VVVVVYV

>

G ven:
int foo(int i) {
if (i == 0) return i;
static int x (foo (i-1));
return x;
foo (10)

What is the value of x after it has been initialized?

Pr oposed Resol uti on:

I believe the "conpletely" in the sentence above al ready indicates
what the answer should be. But it probably should be made clearer

"A local object with static storage duration not initialized with
an integral constant-expression is considered initialized upon
the conpletion of its constructor or once its initialization has
compl eted. "

So, in the exanple above, x should be initialized with the val ue 0.

655

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYV

- When is storing into another union nenber ill-forned?

Il G bbons indicates the foll ow ng:

Here is a programwhich is ill-fornmed in SO C, but | cannot find
any wording in the C++ working paper which would make it ill-fornmed
in C++t:

uni on {
struct A {
doubl e w,
| ong doubl e x;
}oa
struct B {
| ong doubl e vy;
doubl e z;

| SO C disallows this because of the overlap. Since the
| val ue => rval ue conversion of u.b.y occurs before u.a.x is
nodi fied, this code woul d appear to be valid C++.

If the menbers were aggregate instead of scalar types, this would be
implicitly ill-forned.

For exanpl e:
struct tag { int x[1000]; int y[1000] };

uni on {
struct A {

VVVVVVVVVVYVYVYV

>
>
>
>

struct tag w,
| ong doubl e x;
}oa
struct B {
| ong doubl e v;
struct tag z;
} b
}ous

Once the first array elenent is copied, the entire union nmenber
fromwhich it cane becomes invalid - because sonething has been
stored into another union nmenber. So the usage is already
ill-fornmed for aggregates.

.e., 9.5[class.union] para 1 says:

“I'n a union, at nost one of the data nmenbers can be active at any
time, that is, the value of at nost one of the data nenbers can be
stored in a union at any tine."

But what about scalars? |In the original exanple the source and
destination overlap, but does the execution nodel say that an entire
scalar is fetched frommenory before the store begins?

O should Ct++ have the same restriction on overlap as | SO C?

Proposed Resol uti on:

| believe C++ should say what C says.

I couldn't find the rule in the C standard.

1.8[intro. execution] should probably say sonmething like this:
"If two objects overlap, and the value of the first object is
accessed to deternined the value to store in the second object,
the value stored in the second object is unspecified."

- class with direct and indirect class of the sane type:
how can the base cl ass nenbers be referred to?

10.1 [class.nmi] para 3 says:

"[Note: a class can be an indirect base class nore than once and can
be a direct and indirect base class.]"

The WP shoul d either

1)

2)

descri be how the base class nmenbers can be referred to, how
conversion to the base class type is perforned, how initialization
of these base class subobjects takes place, or

say that declaring a class as a direct and indirect base class is
ill-forned.

Pr oposed Resol uti on:

598

| prefer solution 2).

This is of little use and not worth the effort it would require to
descri be the semantics of initialization, access of the base cl ass
menbers, and the semantics of the derived to base conversi on when an
obj ect has both a direct and indirect base class of the sane type.

- Should a diagnostic be required if an rvalue is used in a
ctor-initializer or in areturn stnt to initialize a reference?

12.2[cl ass.tenporary] p5:

"A tenporary bound to a reference in a constructor’s ctor-initializer
(12.6.2) persists until the constructor exits. .
A tenporary bound in a function return statenent (6.6.3) persists
until the function exits."

Tom Pl um i ndi cat es:
> This actually means that there is no reliable way to initialize a
> reference nenber or a return value of reference type with an
> rval ue expression. Gven that, a diagnostic should be required.

Proposed Resol uti on:

Do as Tom says.

536 - When can objects be elimnated (optinized away) ?

12. 8[cl ass. copy] pl15 says:

"Whenever a class object is copied and the original and the copy
have the sane type, if the inplenentation can prove that either
the original object or the copy will never again be used except
as the result of an inplicit destructor call, an inplenmentation
is permtted to treat the original and the copy as two different
ways of referring to the sane object and not performthe copy at
all."

| SSUE 1:
However, this is in clear contradiction with other WP text:
3.7. 1] basic.stc.static] says:
"If an object of static storage duration has initialization or a
destructor with side effects; it shall not be elimnated even if
it appears to be unused."

3.7.2[basic.stc.automatic] says:

"If a named automatic object has initialization or a destructor
with side effects; it shall not be destroyed before the end of its
bl ock, nor shall it be elimnated as an optinization even if
appears to be unused."

Subcl ause 12.8 says that objects may be optim zed away while

subcl ause 3.7 says that static and autonatic objects with
initialization or a destructor with side effects cannot be optinized
away. Which one is right?

Many have suggested different ways to resolve this difference:

Andr ew Koeni g [core-5975]:
> The correct way to resolve the contradiction is to say that copy
> optimzation applies only to | ocal objects.

Patrick Smith [core-6083]:
> 1) Just weaken 3.7.1 and 3.7.2 so they can be overridden by the

> copy constructor optim zation

>

> 2) Restrict the copy constructor optinization to only elimnate
> tenporaries representing function return val ues.

>

> 3) Require the programmer to explicitly mark the cl asses for

> whi ch the copy constructor optimization is pernitted even

> though it would violate 3.7.1 or 3.7.2.

>

> 4) Require the progranmer to explicitly mark the classes for

> whi ch the copy constructor optimzation is not permtted when

> it would violate 3.7.1 or 3.7.2.

| SSUE 2:

Jerry Schwarz in core-5993

> \What may be of concern is not side effects in general, but resource
> allocation. E.g. if Thing is intended to obtain a lock that is

> held until it is destroyed, then you do i ndeed have to be carefu
> about the semantics you give to the copy constructor

>

> A

> Thing outer ; // get the |ock

> {

> Thing inner = outer ; // copy constructor increnents
> /1 count on |ock

>

> /1 do stuff that requires the | ock

> inner.release() ; // decrenment count

> /1 do stuff that doesn't require the |ock

> }

> /1l do stuff that still requires the |ock

>}

>

> The optimnmization allows outer and inner to be aliased, and the
> explicit release in inner may cause the lock to be rel eased too
> early.

Is Jerry’s concern worth worryi ng about ?
Two possi bl e resolutions were proposed:

Jerry suggested the foll ow ng:
> When we introduced the "explicit" keyword | renenber considering
> what it would nmean on copy constructors and thinking about the
> possibility that it would suppress this optim zation

Jason Merrill proposed in c++std-core-5978:
> Perhaps the | anguage in class.copy should be nodified so that it
> only applies when the end of one object’s lifetime coincide with
> the beginning of its copy’'s lifetine.

Proposed Resol uti on:
The core WG di scussed this in Tokyo, and though we didn’'t agree on
a resolution yet, the Ws wanted very nmuch the optim zation in the
return val ue case to be allowed by the standard. The questions that
remain:

1) should the optim zation be allowed for any object with
autonati c storage duration?
i.e.
Thi ng outer ;

Thing inner(outer); // can inner be elimnated?
-> Less fol ks were convinced that this was needed.

2) should the optimization be allowed for any object with static
storage duration?
-> Most folks believed that this was a bad idea.

| believe allowing the optinization for nore than the return val ue
optinization causes nore trouble than it is worth. 12.8 should be
rework to only allow this optimization in the return value case
i.e.

class A{ };
mai n() {
A X

(
Ay =4d();
}

/[l exanple 1
AT |
A a;
return a; /1l a may never be created,
/1 return value created into x directly
}

/'l exanple 2
Ag() { _
return A(); [// constructor call nmay be onmtted
/1 return value created into y directly
}

Pr oposed new words:
12. 8[cl ass. copy] p15 shoul d say:

"Whenever a function has a return type that has class type, if an
object, either with automati c storage duration or a tenporary,
that has the sanme type as the return type is created just for
the purpose of providing a value to be copied and returned by the
function, and if this object is never otherw se used in the
function except as the result of an inplicit destructor cal
(12.4, _class.dtor_), an inplenentation is pernmitted to onit the
creation of this object and the associ ated copy performed by the
return statenent and is pernmitted to create the return val ue
using direct initialization (8.5, _dcl.init_)."

The exanple in para 15 al so needs to be nodified to take into
account this change

3.7.2[basic.stc.automatic] shoul d say:

"If a named automatic object has initialization or a destructor
with side effects ... it shall not be elimnated as an
optinization even if appears to be unused, except in the case of
the return statement copy optimnization (12.8, _class.copy_)."

