Accredited Standards Committee X3 Doc No: X3J16/96-0123 W=21/ N0941
I nformation Processing Systens Dat e: May 28th, 1996
Operating under the procedures of Project: Programm ng Language C++
Aneri can National Standards Institute Ref Doc:
Reply to: Josee Lajoie
(j osee@net.ibm com

o e e e e e e e e e e e e e e e e aa o - +

| When is a function/object used?

oo e e e e e e e e e eeeo oo +

556 - What does "An object/function is used..." nean?
1) FUNCTI ONS:

3. 2[basi c.def.odr] para 2 says:
"A function is used if it is called, its address is taken, it is
used to forma pointer to nmenber, or it is a virtual menber
function that is not pure (_class.abstract_)."

It is not clear if the situations |listed above refer to uses in the
source code or refer to actual behaviors that happen at runtine.
That is, does "if it is called" mean:

1) if a function call expression that calls the function is seen in
the source code of the program (even if the program does not cal
the function at runtine), or

2) if the programactually calls the function at runtine.

int main() {
extern int x;
extern int f();
return 0 ? x+f() : O

}
Are 'x' and 'f’ used?

If meaning 1) is intended, we need to say what it neans for
functions "to be used" if calls to these functions are inplicitly
generated by the inplenentation (i.e. calls to conversion functions,
speci al menber functions, ...).

Proposed Resol uti on:

| believe solution 1) should be adopted.

It is the solution that guarantees consistency anong different

i mpl ement ations. Adopting solution 2) neans that a function would
need to be defined only if it was actually called by the program at
runtime. Whether a function is actually called by the program at
runti me depends on the optim zations the inplenentation perforns.
This is inplenentation specific. This would nean that whether or not
a function needs to be defined in a program would be inplenentation
specific. | don't think this is very helpful for portability.

So, the words in 3.2[basic.def.odr] para 2 needs to be reworked to
make it clear that "used" neans "used in the source code"

Pr oposed new words:
"A function is used if:

-- the function name, or an Ivalue or a pointer that refers to the
function, is the operand of a function call expression (5.2.2,
expr.call),

-- the function nane or an Ivalue that refers to the function is
the operand of the unary & operator (5.3.1, _expr.unary.op_),

-- the function is a nenber function and its nane is used to form
a pointer to nmenber (5.3.1, _expr.unary.op_), or

-- it is a virtual nenber function that is not pure

(_class. abstract).

Sone additional wording is needed to take into account calls that are
implicitly generated by the inplenentation (i.e. calls to conversion
functions, special nenber functions, ...).

Pr oposed new words:
"A function is used if:
-- it is a constructor and it is selected
-- toinplicitly create a class object of static or autonatic
storage duration (3.7.1, 3.7.2),
-- toinmplicitly create a class object of dynam c storage
duration (3.7.3) created by a new expression (5.3.4),
-- when the explicit type conversion syntax (5.2.3) is used,
-- by function overload resolution to performa conversion
(13.3),

-- it is a copy constructor and it is selected to performthe
initialization
-- in argunent passing and in a function return (5.2.2),
-- of the exception object in a throw expression (15.1),
-- of the exception-declaration in a catch handler (15.3),
-- of a temporary object (12.2),

-- it is a destructor and it is selected

-- to destroy an object with static storage duration (3.7.1) at
programtermnation (3.6.3)

-- to destroy an object with automatic storage duration (3.7.2)
when the block in which the object is created exits (6.7),

-- to destroy a tenporary object when the lifetine of the
tenporary object ends (12.2),

-- to destroy an object allocated by a new expression (5.3.4),
t hrough use of a del ete-expression (5.3.5),

-- in several situations due to the handling of exceptions
(15.3),

-- it is an assignnent operator and it is selected
-- to assign a value of its class type or a value of a class
type derived fromits class type to an object of its class
type (see 12.8).

Did | forget anything?

I know some standard purists do not |ike these kinds of |ists because
there is always the chance that the list is inconplete. However, |
believe such lists inprove the readability and accessibility of the
standard greatly.

2) OBJECTS:
3. 2[basi c. def. odr] does not say anything about what it nmeans for an
obj ect to be used.

Pr oposed Resol ution:
Here again, | believe a definition for an object should be required
if the source code for a the program "uses" the object.

Pr oposed new words:

"A non-local object with static storage duration is used if an
expression uses the nane of the object or uses an |val ue that
refers to the object (other than as the operand of the sizeof
operator)."

427 - \When is a diagnostic required when a function/variable with
static storage duration is used but not defined?

3. 2[basic.def.odr] para 2 says:

"Every program shall contain at |east one definition of every
function that is used in that program That definition can appear
explicitly in the program it can be found in the standard or a
user-defined library, or (when appropriate) it is inplicitly

defined (see class.ctor_, _class.dtor_and class.copy). If a
non-virtual function is not defined, a diagnostic is required only
if an attenpt is actually made to call that function. |If a virtua

function is not defined and it is neither called nor used to forma
poi nter to nmenber, no diagnostic is required."”

The sentence: "If a non-virtual function is not defined, a diagnostic
is required only if an attenpt is actually nmade to call that
function." This seens to be hinting that, for cases such as the ones
above, a diagnostic is not required.

[Jerry Schwarz, core-6173:]

I think we should be tal ki ng about undefined behaviors, not required
di agnostics. That is, if a programreferences (calls it or takes its
address) an undefined non-virtual function then the program has
undefi ned behavi or

[Fergus Henderson, core-6175, on Jerry’s proposal:]

I think that would be a step backwards. |[|f a variable or function
is used but not defined, all existing inplenentations will report a
diagnostic. Wat is to be gained by allow ng inplenentations to

do sonething else (e.g. delete all the users files, etc.) instead?

[Mke Ball, core-6183:]

Then you had better not put the function definition in a shared
library, since this isn't |oaded until runtime. Sonetines |inkers
will detect this at link time and sonetinmes they won't.

[Sean Corfield, core-6182:]
I"d like it worded so that an inplenmentation can still issue a
di agnostic here (exanpl e above) AND REFUSE TO EXECUTE THE PROGRAM
If "x” and 'f’ were not nentioned in the program (except in their
declarations) | would be quite happy that no definition is required.
But unl ess an inplementation can refuse to execute the program you
are REQUI RING i npl enentations to make the optimsation and that is
definitely a Bad Thing(tm, IMO It seens the only way to allow that
is to nmake the programill-formed (under the ODR) but say no
di agnostic is required.

[Fergus Henderson, core-6174:]

bj ectCenter reports a diagnostic only if an attenpt is actually
made to use the function or variable; in other words, link errors
are not reported until runtime. 1In an interpreted environnent, this
is quite desirable.

Proposed Resol uti on:

There is another situation simlar to this one already properly
covered by the WP. access to copy constructors. The WP says that
even if the call to a copy constructor is elided, the copy
constructor nust still be accessible.

| believe the WP should have the sanme requirement for a function

definition if the function is "used" (i.e. as defined in resolution
for issue 556) in a program i.e., it nmust be defined. O course,
this should be a "no diagnostic is required" kind of rule since it is
not al ways possible for the inplenentation to generate an error
(dynamically linked libraries, etc.).

Pr oposed new words:

Add to the sentence in 3.2 para 2
"Every program shall contain at |east one definition of every
function that is used in that progrant

; no diagnostic required.”

And delete the last two sentences of the paragraph”
"I'f a non-virtual function is not defined, a diagnostic is
required only if an attenpt is actually made to call that

function. If a virtual function is not defined and it is neither
called nor used to forma pointer to nmenber, no diagnostic is
required.”

2) VARI ABLES

3. 2[basic.def.odr] para 3 says:

"A non-local variable with static storage duration shall have exactly
one definition in a programunless the variable either has a built-in
type or is an aggregate and unless it is either unused or used only
as the operand of the sizeof operator."

Joe Coha nmentioned in private email:
"Do | really need to have one definition of the static data nmenber
in the progran? Even if it’'s unused? 9.4.2 says yes. However,
this seens contradictory to the rules in 3.2. If a programis not
required to define a non-local variable with static storage duration
if the variable is not used, why is the WP requiring that the static
data menber be defined if it is not used?"

Pr oposed Resol ution:

The requirenments for variables with static storage duration
(including static data nenbers) should be sinilar to those for
functions, i.e. if a variable is "used" (i.e. as defined in
resolution for issue 556) in a program it nust be defined. Just
like it is the case for functions, this should be a "no diagnostic is
requi red" kind of rule.

Proposed new wor ds:

Replace 3.2 para 3 with

"A non-local object with static storage duration that is used
in a programshall be defined; no diagnostic required. Only one
definition shall be provided in the program"”

9.4.2 para 5 should be nodified to say:
"If a static data menber is used in a program exactly one
definition of the static data nenber shall be provided (3.2)."

