Doc. No.: WE21/ N0937=X3J16/ 96- 0119

Dat e: 28 May 1996

Proj ect: C++ Standard Library

Reply to: Nat han Myers
<ncm@antri p. or g>

Clause 20 (UWilities Library) |ssues (Revision 4)

** Revision History:

Revision 0 - 22 May 1995 [was Version 1]

Revision 1 - 09 Jul 1995 [was Version 2] (edits before Monterey)
Revision 2 - 26 Sep 1995 (pre-Tokyo)

Revi sion 3 - 30 Jan 1996 (pre-Santa Cruz)

Revi sion 4 - 28 May 1996 (pre-Stockholm

** | ntroduction

This docunent is a summary of issues identified for the C ause 20,
identifying resolutions as they are voted on, and offering reconmendati ons
for unsolved problens in the Draft where possible.

** | ssue Nunber: 20- 007

** Title: C functions asctine() and strftinme() use global l|ocale
** Sections: 20.5 [lib.date.tine]
** St atus: cl osed by default (Tokyo)

** Description:

From Box 8 in the pre-Stockhol mdraft:
Note: in Monterey we accepted the resolution for issue 20-007
in 95-0099R1, the body of which was "to be specified"! So this
sub-cl ause still needs work :-)

** Di scussion

20-007 concerned the rel ationship between C functions asctine()

etc. and the C++ locale. Now that we know there is none, | am
| eaving this closed, and recommendi ng that the Editor renove the box.

** Requestor: St eve Runmsby

** Wrk G oup: Library: Wilities C ause 20

** | ssue Nunber: 20- 024

** Title: poi nter _to_unary/binary_function pass-by-val ue

** Sections: 20. 3.7 Adapters for pointers to functions
[1'ib.function. pointer.adaptors]

** St atus: active

** Description:

operator() of pointer_to_unary_function and pointer_to_binary_function
currently pass their argunents by const reference. This prevents
ptr_fun() fromworking with functions which pass by const reference
because the pointer_to.. operator() argunents end up being references
to references. For exanple:

int ny_fun(const Foo& bar) { ... }

for_each(..., ..., ptr_fun(ny_fun)); [/ oops! error

This probl em has been fixed in the HP STL distribution by changing the
pointer to.. operator() argunents to pass by value, so this represents
status quo in the outside world.

** Proposed Resol ution

In 20.3.7 [lib.function.pointer.adaptors] class pointer_to _unary_function

change:

Result operator()(const Arg& Xx) const;

to:
Result operator()(Arg x) const;

In 20.3.7 [lib.function.pointer.adaptors] class pointer_to_binary function
change:

Result operator()(const Argl& x, const Arg2& y) const;
to:

Result operator()(Argl x, Arg2 y) const;

** Requestor: Beman Dawes

** Owner:

** Wrk G oup: Library: Wilities C ause 20

** | ssue Nunber: 20- 025

** Title: St ack, queue, and priority _queue adaptor tenplates should

not have all ocator paraneter.
** Sections:
** St atus: active

** Description:
(This really should be a O ause 23 issue, but it also concerns allocator)

The stack<>, queue<>, and priority_queue<> adaptor tenpl ates as
currently defined take a tenplate paraneter Allocator, which is
not used by the adaptor except as an argunent to the constructor
This allocator can and shoul d be obtained fromthe Container
argument cl ass.

** Proposed Resol ution

Elimnate the Allocator tenplate paranmeter in each of stack<>
queue<>, and priority queue<> Change constructor argunments of these
tenpl ates to declare an argunent using the menber typedef fromthe
Cont ai ner argunent, |ike:

stack(typenane Container::allocator_type = Container::allocator_type());

** Requestor: Bj arne Stroustrup

** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Nunber: 20- 026

** Title: raw storage iterators and others described in

terns of nonexistent conponents.
** Sections:
** Gt at us: active
** Description:

M chael writes:

Was the exclusion of an Allocator tenplate paraneter in the

raw storage iterators, destroy() and the uninitialized *() algorithns,
and possibly the tenporary buffer algos sinply an oversight? The
draft defines their behavior based on functions that have since been
renoved.

** Proposed Resol ution:

(none yet)

** Requestor: k|l obe@bj ect space. com

** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Number: 20- 027

** Title: al | ocator new and del ete inconplete

** Sections: 20.1.4 [lib.allocator.requirements],
20.4 [lib. nenory],
20.4.1.2 [lib.allocator. gl obal s]

** Status: active

** Description:

Cl ause 20 defines operator newm) for allocators, but does not
define operator newf](), nor operators delete() and delete[]().
These shoul d be added to the table of allocator requirenents
and to the class interface for the default allocator, and

i ncorporated into the exanples.

These are needed so that the nenory will be deallocated if an
exception is thrown froma constructor.

** Proposed Resol ution:
Add to the Allocator requirenments table in [lib.allocator.requirenments]:

operator del ete(void* p, Xx) (none) x. deal | ocat e(p)
operator delete[](void* p, Xx) (none) x. deal | ocat e(p)

Add to the <menory> synopsis in [lib.nenory] and the default allocator
globals in [lib.allocator. gl obal s]:

tenpl ate <class T> void operator del ete(void* p, allocator<T>& x);
tenpl ate <class T> void operator delete[](void* p, allocator<T>& x);

Requires: p obtained by a call to allocator<T>::allocate, not
yet deal | ocat ed.
Ef fect: x.deallocate(p).

** Requestor: k|l obe@bj ect space. com

** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Nunber: 20- 028

** Title: auto_ptr<> need throw() specifications
** Sections:

** St atus: active

** Description:

In Iib-4686, Geg Colvin:

I was recently rem nded that since | first proposed auto_ptr the

restrictions on exception handling (lib.res.on.exception.handling) in the W

have changed from

1 Any of the functions defined in the C++ Standard library can report a
failure to allocate storage by throwi ng an exception of type bad_all oc,

or a class derived frombad_all oc

2 G herwi se, none of the functions defined in the C++ Standard library

throw an exception that nust be caught outside the function, unless
explicitly stated otherw se.

to:

1 Any of the functions defined in the C++ Standard library can report a
failure by throwing an exception of the type(s) described in their
Thr ows: par agr aph and/ or their exception-specification
(_except.spec_). An inplenmentation may strengthen the exception-

specification for a function by renoving |listed exceptions.

2 None of the functions from the Standard C library shall report an

error by throwi ng an exception, unless it calls a programsupplied
function that throws an exception

3 Any of the functions defined in the C++ Standard library that do not

have an exception-specification may throw any exception. An

i mpl ementation may strengthen this inplicit exception-specification

by adding an explicit one.
Therefore auto_ptr now needs exception specifications.

An auto_ptr requires no free store, and requires nothing of its type

argunent but an accessible delete operation. The delete operation is used

in ~auto_ptr(), so ~auto_ptr() can throw anything thrown by the delete.
No other auto_ptr function need throw anyt hing.

** Proposed Resol ution

Al'l operations on auto_ptr but its destructor should have a throw()
speci fications:

nanespace std {
tenpl at e<cl ass X> class auto_ptr {
publi c:
/1 20.4.5.1 construct/copy/destroy:
explicit auto_ptr(X* p=0) throw();
tenpl ate<cl ass Y> auto_ptr(const auto_ptr<Y>& throw);

tenpl at e<cl ass Y> auto_ptr& operator=(const auto_ptr<Y>& throw);

~auto_ptr();
/1 20.4.5.2 menbers:
X& operator*() const throw();
X* operator->() const throw);
X* get() const throw();
X* rel ease() const throw);

} il

}
** Requestor: G eg Col vin <greg@ nrgol d. conr
** Owner:
** Work G oup: Library: Uilities C ause 20
** | ssue Nunber: 20- 029
** Title: General pointer conparisons needed for use in set<>
** Sections:
** Status: active

** Description:

map<>.

St andard containers set<> and nultiset<> depend on a total ordering
anong elenents. |If pointers are to be stored in these structures,
a neans is needed to provide a total ordering on pointers. The

| anguage does not provide such an operation

Lengthy reflector mail advanced three alternatives:

1. Extend, in the core | anguage, operator< applied to pointers to yield a
total order;

2. Provide a library function object |ess_pointer(void*, void*) defined
to yield a total order for pointers;

3. Require that the standard function objects | ess<> etc., specialized
on pointers, yield a total order. They would be explicitly
specialized only on architectures for which operator< does not
al ready provide a total order.

** Di scussi on

For (1), The LWG has no say in | anguage core extensions. The Core
group consensus seens to be agai nst such an extension, on the grounds
that the performance i npact on sonme architectures could be prohibitive.

Alternative (2) adds yet another conponent to the library, or nore
if greater_pointer<> |ess_equal _pointer<> etc are also added.

Alternative (3) reduces flexibility for users who m ght be storing
pointers within a single array, and who do not want to incur the
expense of general pointer conparisons when built-in operator<()
suffices.

(2) is less convenient to use than (3); if (3) is inplenmented,
users can avoid the total ordering expense by defining their
own conpari son object.

** Proposed Resol ution
Add to [lib.conparisons]

For tenmplates greater, |less, greater_equal, and |ess_equal
the specializations for any pointer type yield a total order,
even if built-in operators <, > <=, >= do not.

** Requestor: Beman Dawes

** Messages: Core- 6691, 6649, 6650, 6651

** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Number: 20- 030

** Title: auto_ptr<> descriptions inproperly inply undefined behavi or
** Sections:

** St atus: active

** Description:

Qur WP specifies that violations of Requires clauses give undefined
behavi or. However, the Requires clauses in 20.4.5.1 (auto_ptr ctors)
can all be diagnosed at conpile time. | can see no benefit to not
requiring these diagnostics, so sone small changes are in order

** Proposed Resol ution

Change:

* %

* %

* %
* %
* %

* %

* %

20.4.5.1 auto_ptr constructors
[lib.auto.ptr.cons]

explicit auto_ptr(X* p = 0);

Requi res:
p points to an object of type X or a class derived fromX for which
NNNNNNNN

p shall point

delete p is defined and accessible, or else pis a null pointer

tenpl at e<cl ass Y> auto_ptr(const auto_ptr<Y>& a);
Requi res
Y is type X or a class derived from X for which delete(Y*) is defined

NNNN

Y shal |l be

and accessi bl e.

tenpl at e<cl ass Y>aut o_ptr<X>& operat or=(const auto_ptr<Y>& a);
Requi res
Y is type X or a class derived from X for which delete(Y*) is defined

NANNNN

Y shal |l be

and accessi bl e.

Request or: Geg Colvin
Owner :
Work G oup: Library: Wilities C ause 20
| ssue Nunber: 20- 031
Title: Function object "times" collides with conmon C function nane
Secti ons: 20.3 [lib.function. objects] and
20.3.2 [lib.arithnetic. operations
St at us: active
Descri ption:

would like to see the nane of the function object "tines" which

performs multiplication i.e. tenplate <class T> struct tinmes changed
to "multiplies".

The reason for this is that the name "tinmes" conflicts with the XP&4

"t

i mes" function declared in <sys/times.h> Eventually this conflict

shoul d be resolved by putting STL tinmes in the std nanespace. However
renamng "tines" to "multiplies" will prevent confusion for people who

ar

e famliar with the XP&4 tines routine and it clearly identifies the

function of the STL routine.

* %

Pr oposed Resol uti on:

In [lib.function.objects] and in [lib.arithmetic. operations],

* %

* %

Change the tenplate type nane "tines" to "nultiplies"

Request or: Sandra Wit man <whitnman@| e. enet . dec. conp
Oaner :

** Work G oup: Library: Wilities Cause 20
** | ssue Nunber: 20- 032

** Title: Al l ocator pointer and reference required conversions
need clarification

** Sections: 20.1.4 [lib.allocator.requirenents]

** Status: active

** Description:

(This is Box 20-1 in the pre-Stockhol mdraft.)
The table of Allocator requirenments specifies conversions:

X::pointer --> T*, void*, X :const_pointer, XT<voi d>::const_pointer
X::const_pointer --> T const*, void const*, XT<voi d>::const_pointer
X :reference --> T&

X::const_pointer --> T consté&

and describes the conversions to built-in pointers and references as
yielding a value suitable to use as "this" in a nmenber function

The conversion to XT<voi d>::const_pointer (which is shorthand for
X::rebind<voi d>::other::const_pointer) is for use as the "hint"
argunent to allocate.

The question is, is this a conplete set of necessary conversions,
or does the list require refinement? 1In particular, should sone
reference conversions (e.g. X :reference --> X :const_reference)
be required as well?

** Proposed Resol ution

(none yet)

** Requestor: Nat han Myers <ncm@antri p. or g>

** Onner :

** Work G oup: Library: Wilities Cause 20

** | ssue Nunber: 20- 033

** Title: al l ocator::address nenbers need clarification

** Sections: 20.4.1, 20.4.1.1 [lib.default.allocator],
[lib.allocator.nenbers]

** St atus: active

** Description:

Menbers address() are defined to apply operator& to the reference
argunent. This | eaves unclear whether built-in or nenber operator&
is used. W should nake it clear that the built-in operator is used,
and that no exception is thrown.

** Proposed Resol ution

For the default allocator nenbers allocator::address():

poi nter address(reference x) const;
const _poi nter address(const_reference x) const;

add "throw()" to each, and document that they return
"::operator&x)", not "&x".

** Requestor: Nat han Myers
** Omner:

** Work G oup: Library: Wilities Cause 20
** | ssue Nunber: 20- 034

** Title: Use of "hint" argunent to allocate need clarification
** Sections: 20.4.1.1 [lib.allocator. menbers]
** St atus: active

** Description:
Box 6 in the pre-Stockhol mdraft:

TBS: using "hint" should be docunented as unspecified, but intended
as an aid to locality if an inplenmentation can use it so.

** D scussion
In the Allocator Requirenments ([lib.allocator.requirenments], 20.1.4):
6 The second paraneter to the call a.allocate in the table above is
an i npl emention-defined hint fromthe container inplenentor to
the allocator, typically as an aid for locality of reference

with the footnote:

In a container nenber function, the address of an adjacent el enent
is often a good choice to pass for this argunent.

This describes Allocator semantics well enough for inplenentors of
contai ners, but may not say enough about the default allocator.

I don’t know what "inplenentation-defined", in paragraph 6, neans
in that context.

** Proposed Resol ution

In [lib.allocator.requirenments], paragraph 6 quoted above, strike
"i mpl enent ati on-defi ned".

In [lib.allocator.nenbers], add to allocator::allocate():
Requires: *hint* either 0 or previously obtained from nenber
al | ocate and not yet passed to menber deallocate. The val ue
hint nmay be used by an inplenentation to help inprove
per f or mance.

** Requestor:

** Owner:

** Work G oup: Library: Wilities Cause 20

** | ssue Number: 20- 035

** Title: Al'l ocator requirements table typo cl eanup
** Sections: 20.1.4 [lib.allocator.requirenents]

** Status: active

** Description:
The description of required Allocator menber x.construct is:
x.construct(p,u) (not used) Ef fect: new((void*)p) T(u)

but uis not a value of type T, but a pointer to a value of type T.
This is a typo. Also, the line

typenanme X
rebi nd<U>: : ot her for an instantiation
of XT<T>, the type XT<U>

uses an undefined name, XT. This should be in the previous table.
** Proposed Resol ution
Change the Table 6 "construct"” entry to:

x.construct(p,t) (not used) Effect: new((void*)p) T(t)
Add to Table 5:

XT<T> same as X

and change the definition of rebind to:

typenanme X

r ebi nd<U>: : ot her the type XT<U>
** Requestor: Nat han Myers
** Owner:
** Work G oup: Library: Wilities Cause 20
** | ssue Nunber: 20- 0xx
** Title:
** Sections:
** St atus: active

** Description:
** Di scussion
** Proposed Resol ution

** Requestor:
** Oomner:

Cl osed i ssues:

** | ssue Nunber: 20- 001
** Title: Al l ocat or needs operator ==
** Resol ution: passed

** | ssue Nunber: 20- 002
** Title: al | ocator::types<> has no public nmenbers
** Resol ution: passed

** | ssue Number: 20- 003
** Title: Al'l ocator requirements inconplete
** Resol ution: passed

** | ssue Nunber: 20- 004
** Title: al | ocator paraneter "hint" needs hints on usage
** Resol ution: passed

** | ssue Nunber: 20- 005
** Title: Default allocator nenber all ocate<T>() doesn’t "new T".
** Resol ution: passed

** | ssue Number: 20- 006
** Title: al | ocator:: max_size() not docunented
** Resol ution: passed

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

* %
* %

* %

* %

* %

* %

* %

* %

* %

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
Resol uti on:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

| ssue Nunber:

Title:
St at us:

20-008

construct() and destroy() functions should be nenbers

passed

20- 009

Al'l ocator nmenber init_page_size() no | onger appropriate.

cl osed

20- 010
auto_ptr specification wong.
passed

20- 011
speci al i zation of allocator::types<voi d> inconplete
passed

20- 012
get _tenporary_buffer has extra argunent decl ared
passed

20- 013
get _tenporary_buffer semantics inconplete
passed

20- 014
al l ocator could be a tenplate again
passed

20- 015
cl ass unary_negate ill-specified.
passed

20- 016
bi nder{1st| 2nd}: : val ue types w ong.
passed

20- 017
inmplicit_cast tenplate wanted
cl osed, no action (Tokyo)

20-018
auto_ptr::reset to self
cl osed, inplenented choice 2 (Tokyo)

20- 019
no default ctors on many lib classes

cl osed, no action (Tokyo)

20- 020

Tenpl ate constructor for pair<>
passed

20- 021

shoul d pai r<> have a default constructor?
cl osed, inplenented (Tokyo)

20- 022
unary_conpose and bi nary_conpose m ssing.
cl osed, no action (Tokyo)

20- 023
pai r<> shoul d have typedefs
cl osed, inplenented

