
Title: Clause 26 (Numerics Library) Issues List
Author: Judy Ward
Document Number: X3J16/96-0116R1

WG21/N0934

Work Group: Library
Issue Number: 26/009
Title: valarray usefulness
Section: 26 Old
Status: active
Description:

To: C++ libraries mailing list
Message c++std-lib-3881

In ANSI public comment T29, Daveed Vandevoorde <vandevod@cs.rpi.edu> says:

> Comments on the proposed <valarray> header
> ...
> Probably the simplest way to address the above concerns is to simply
> abandon the standardization of a numerical array.

I would like to take this alternative seriously.

With the advent of Todd Veldhuizen’s work on Expression Templates,
it is far from clear that valarray<> is the appropriate vehicle to
aid in optimizing numeric array processing in C++. (For those who
have not read Veldhuizen’s work in C++ Report, a copy may be found
at <http://www.roguewave.com/>.) His work implies that using even
a vendor-optimized/compiler-supported valarray<> may cost a factor
of two or more in speed compared to using another library based on
portable language facilities. This brings into question the value
of the valarray<> template; the original argument in its favor was
that it provided the hooks to permit optimal implementation "under
the hood" (that’s "under the bonnet" for you Brits).

This is not a formal proposal to eliminate valarray<>, yet; it is
instead a request for comments. I would like particularly to hear
from ISO representatives whose vote might be forced to change if
it is removed.

Nathan Myers
myersn@roguewave.com

Proposed Resolution:

Daveed Vandevoorde had a separate proposal (X3J16/96-0039, WG21/N0857)
in the pre-Santa Cruz mailing. In Santa Cruz the library working group
asked him to write up a proposal describing the exact changes that would
need to be made to the draft to implement this proposal for Stockholm.

Requestor: Nathan Myers
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
c++std-lib-3880
c++std-lib-3883
c++std-lib-3886
c++std-lib-3887
c++std-lib-3889
c++std-lib-3897
c++std-lib-3900
c++std-lib-3906
c++std-lib-3908

c++std-lib-3909
c++std-lib-3910
c++std-lib-3914
c++std-lib-3918
c++std-lib-3920
c++std-lib-3925
c++std-lib-4682

Papers: (committee documents that discuss this issue)
X3J16/96-0039, WG21/N0857

Work Group: Library
Issue Number: 26/013
Title: sqrt() function in complex lib -- which root does it return?
Section: 26.2 Old
Status: active
Description:

To: C++ libraries mailing list
Message c++std-lib-4427

I see we have a sqrt(complex) that returns a complex (of the
right type). However, doesn’t a complex have MANY square roots?

Are anyone conducting a review of the math library?

- Bjarne

To: C++ libraries mailing list
Message c++std-lib-4430

Bjarne Stroustrup writes:

> I see we have a sqrt(complex) that returns a complex (of the
> right type). However, doesn’t a complex have MANY square roots?

Well, it has two. If x is a root, then -x is also a root. By
widespread convention, the root with phase angle [-pi/2, pi/2)
(as I recall) is preferred as the return value for sqrt.

> Are anyone conducting a review of the match library?

We’ve had some useful feedback from the heavy hitters in the C
math library community.

P.J. Plauger

Proposed Resolution:

See Issue 26/016, specification of branch cuts and ranges.

Requestor: Bjarne Stroustrup
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/015
Title: should norm() be removed/renamed in complex library?
Section: 26.2.6 Old

Status: active
Description:

26.2.1 I believe the term "norm" commonly refers to the
square root of the squared magnitude (i.e. abs), and not
the squared magnitude. Is a function for the squared magnitude
needed? Note that the squared magnitude can be computed from abs
with only deserved over/underflow, but not vise versa.

Proposed Resolution:

Discussed at Santa Cruz, the library working group suggested
the name abs_sqr() but the full committee wanted to see what
other languages used. I’ve looked in the FORTRAN and ADA
standard and have not found an equivalent function.

Requestor: ?? (public comment)
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/016
Title: Should branch cuts and ranges be specified in complex lib?
Section: 26.2.7 Old
Status: active
Description:

!!! 26.2.7. Branch cuts and ranges need to be specified for
functions. See section 3 of "Complex C Extensions", Chapter 6
of X3J11’s TR on Numerical C Extensions.

Proposed Resolution:

This resolution was from the TR mentioned above and also follows the
conventions for branch cuts and ranges in the ADA95 standard and the
FORTRAN 90 standard.

Expand Section 26.2.7 to:

Section 26.2.7 complex transcendentals

template <class T> complex<T> acos (const complex<T>& x);

Notes: The branch cuts are outside the interval [-1,1] along the real axis.

Returns: the complex arc cosine of x, in the range of a strip
mathematically unbounded along the imaginary axis and in the
interval [0,pi] along the real axis.

template <class T> complex<T> asin (const complex<T>& x);

Notes: The branch cuts are outside the interval [-1,1] along the real axis.

Returns: the complex arc sine of x, in the range of a strip
mathematically unbounded along the imaginary axis and in the
interval [-pi/2, pi/2] along the real axis.

template <class T> complex<T> atan (const complex<T>& x);

Notes: The branch cuts are outside the interval [-i,i] along
the imaginary axis where i is imag(x).

Returns: the complex arc tangent of x, in the range of a strip
mathematically unbounded along the imaginary axis and in the
interval [-pi/2, pi/2] along the real axis.

template <class T> complex<T> atan2 (const complex<T>& x, const complex<T>& y);
template <class T> complex<T> atan2 (const complex<T>& x, T y);
template <class T> complex<T> atan2 (T x, const complex<T>& y);

Notes: The branch cuts are outside the interval [-1,1] along
the imaginary axis.

Returns: the complex arc tangent of y/x, in the range of a strip
mathematically unbounded along the imaginary axis and in the
interval [-pi, pi] along the real axis.

template <class T> complex<T> cos (const complex<T>& x);

Returns: the complex cosine of x.

template <class T> complex<T> cosh (const complex<T>& x);

Returns: the complex hyperbolic cosine of x.

template <class T> complex<T> exp (const complex<T>& x);

Returns: the complex base e exponential of x.

template <class T> complex<T> log (const complex<T>& x);

Notes: The branch cuts are along the negative real axis.

Returns: the complex natural (base e) logarithm of x, in the range of a strip
mathematically unbounded along the real axis and in the
interval [-i*pi, i*pi] along the imaginary axis where i is
imag(x).

template <class T> complex<T> log10 (const complex<T>& x);

Notes: The branch cuts are along the negative real axis.

Returns: the common (base 10) logarithm of x.

template <class T> complex<T> pow (const complex<T>& x, const complex<T>& y);
template <class T> complex<T> pow (const complex<T>& x, T y);
template <class T> complex<T> pow (T x, const complex<T>& y);

Notes: The branch cut for x is along the negative real axis.

Returns: the complex power of base x raised to the y-th power.

template <class T> complex<T> sin (const complex<T>& x);

Returns: the complex sine of x.

template <class T> complex<T> sinh (const complex<T>& x);

Returns: the complex hyperbolic sine of x.

template <class T> complex<T> sqrt (const complex<T>& x);

Notes: The branch cuts are along the negative real axis.

Returns: the complex square root of x, in the range of
the right half-plane.

template <class T> complex<T> tan (const complex<T>& x);

Returns: the complex tangent of x.

template <class T> complex<T> tanh (const complex<T>& x);

Returns: the complex hyperbolic tangent of x.

Also, remove box 98 and the paragraph above it (See issue 26/047.)

Requestor: ?? (public comment)
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/019
Title: Should typedefs be provided in complex lib?
Section: 26.2.7 Old
Status: active
Description:

Should the complex library provide typedefs for the
the specialization complex<float>, complex<double>,
and complex<long double> (like the string library
provides for basic_string<char> and basic_string<wchar_t>)?

Proposed Resolution:

Possible names for these typedefs are fcomplex, dcomplex, lcomplex
(or ldcomplex) or float_complex, double_complex, ldouble_complex
(or lddouble_complex).

Declarations (such as typedef complex<float> fcomplex) would have to be
added to the bottom of the Complex synopsis in Section 26.2 and after
each specialization in Section 26.2.2.

Requestor: Tom Plum and others
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/020
Title: order of argument to valarray constructors
Section: 26.3 New
Status: active
Description:

- valarray constructors have (value, size_t num)
normally in the library it is the other way round
(string, vector, etc.).

This should get fixed to be consistent.

Comment from Judy Ward:
valarray has:
valarray(const T& val,size_t n) initializes n elements of the array with val
valarray(const T* ap,size_t n) initializes first n elements with corresponding e
lements in array pointed to by ap

basic_string has:
basic_string(size_type n, charT c) // inconsistent with valarray
basic_string(const charT,size_type) // consistent with valarray

vector has:
vector(size_type n,const T& value) // inconsistent with valarray

So I think only the first constructor needs changing for consistency.
This would mean in Section 26.3.1 and Section 26.3.1.1. change
valarray(const T&,size_t) to valarray(size_t,const T&)

Comment for Daveed Vandevoorde <vandevod@cs.rpi.edu>:
I agree that it is sufficient (and don’t care to much either way), but
I would find it unintuitive to have the size parameter sometimes in the
second and sometimes in the first position; at least within valarray I
think it would be good to stay consistent (my personal preference also
goes to size as the first argument to keep the vector<T> convention).

Comment from Nicolai on Daveed’s mail:
NO, i disagree.
First, consistence is a big goal.
Second, i would agree if the size parameter would have the same meaning.
But is hasn’t. First it is "num times of ..." second it it
"take ..., but only num elements of it".
So it is OK to have different positions.

Proposed Resolution:

Change Section 26.3.1 and Section 26.3.1.1 change
valarray(const T&,size_t) to valarray(size_t,const T&)
In the description in Section 26.3.1.1 change "second"
to "first" and "first" to "second".

Requestor: Nicolai Josuttis
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/021
Title: copy ctor declared for slice_array
Section: 26.3 New
Status: active
Description:

- In 26.3.3 Slices have no copy constructor but in 26.3.3.1
they have. What’s correct ?

Proposed Resolution:

On p. 17-7 it says "For the sake of exposition, Clause 18 through
27 do not describe copy constructors, assignment operators, or
(non-virtual) destructors with the same apparent semantics as
those that can be generated by default."

I think that is the situation here, so the declaration in 26.3.3.1
should be removed.

Requestor: Nicolai Josuttis
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/022

Title: int should be size_t for element type of indirect_array
Section: 26.3 New
Status: active
Description:

- In 26.3.1.4 Index operator for indirect arrays has element type
size_t, but in 26.3.8 it has int. What’s correct ?

Comment for Daveed Vandevoorde <vandevod@cs.rpi.edu>:

This has proven to somewhat of a problem in actual valarray code:
some algorithms expressed in terms of indirect access create negative
intermediate value (e.g.: a[p+q] = 0.0; // p, q can contain negative
values) requiring signed types (size_t cann be unsigned). The current
workaround requires a temporary valarray<size_t> or not using the
indirect access mechanism.

My proposal would be to either use ints (probably too restrictive) or
valarray<T>::index which would be required to be a signed integral type
with at least the range of int.

Would it be acceptable to introduce a valarray<T>::index_type typedef?
(or even make ‘int’ or ‘long int’ the index/stride type?)

Comment from Dave Dodgson:
Certainly we could do that, the question is to what do we set it?
Perhaps we should make this a template parameter (with a default of
int or long int). We would no longer need to include <cstddef> if we
did this.

Proposed Resolution:

Section 26.3.1
Add:
// types:
typedef implementation_defined index_type;

Change:
T operator[](size_t) const;
T& operator[](size_t);
valarray<T> operator[](const valarray<size_t>&) const;
indirect_array<T> operator[](const valarray<size_t>&);
to:
T operator[](index_type) const;
T& operator[](index_type) const;
valarray<T> operator[](const valarray<index_type>&) const;
indirect_array<T> operator[](const valarray<index_type>&);

Section 26.3.1.3 and 26.3.1.4
change size_t to index_type

Section 26.3.8
change:
indirect_array<T> valarray<T>::operator[](const valarray<int>&)
to:
indirect_array<T> valarray<T>::operator[](const valarray<index_type>&)

Requestor: Nicolai Josuttis
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
c++std-lib-4674
c++std-lib-4675
c++std-lib-4679
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/023
Title: should min/max be global or member functions?
Section: 26.3 New
Status: active
Description:

- In 26.3.1 min()/max() are member functions, in 26.3.2.3 they are
global. What’s correct ?

Comment for Daveed Vandevoorde <vandevod@cs.rpi.edu>:
Note that there are two min’s (and two max’s): one returning the
smallest element in an array and one taking two arrays and returning
an new array such that (min(a, b))[i] == min(a[i], b[i]). I suspect
Kent Budge intended the member function to be the former and the
regular function to be the latter. Personally, I rather keep this
sort of function outside the class interface.

Resolution:

Add to Section 26.3.1.7:

T min() const;

Returns the smallest element in the array.

T max() const;

Returns the largest element in the array.

Section 26.3:
Change
template <class T> T min(const valarray<T>&);
template <class T> T max(const valarray<T>&);
to:
template <class T> valarray<T> min(const valarray<T>&, const valarray<T>&);
template <class T> valarray<T> max(const valarray<T>&, const valarray<T>&);

Change Section 26.3.2.3
Change:
template <class T> T min(const valarray<T>& a);
template <class T> T max(const valarray<T>& a);
to:
template <class T> valarray<T> min(const valarray<T>& a, const valarray<T>& b);
template <class T> valarray<T> max(const valarray<T>& a, const valarray<T>& b);

Copy the first paragraph into Section 26.3.1.7, since the same
rule applies to the member functions min() and max().

change second paragraph to read:

The min() function returns an array such that
(min(a, b))[i] == min(a[i], b[i]).
The max() function returns an array such that
(max(a, b))[i] == max(a[i], b[i]).

Remove the third paragraph or move it to Section 26.3.1.7.

Requestor: Nicolai Josuttis
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/024
Title: make valarray arithmetic operators more general?
Section: 26.3 New
Status: active
Description:

- I see a problem if I do:
valarray<double> va;
va *= 2;

As 2 is no double, no function is found because
all templates only have one type and templates have resticted
type conversions.
Wouldn’t it make sense to use two template types, one for
the elements in the valarray and one for the elements
i operate with, to let this work ?
Example:
template <class T>
class valarray {
...
template <class T2>
valarray<T>& operator*= (const valarray<T2>&);
template <class T2>
valarray<T>& operator*= (const T2&);
...

};

- One thing I missed really:
va[slice(3,4,2)] *= 2;
should be possible.
Or in general, for all subset types assignment operators should be
overloaded for one simple value on the right side (as it is
for valarrays):
template <class T>
class slice_array {
...
template <class T2>
void operator*= (const valarray<T2>&); // see above
template <class T2>
void operator*= (const T2&); // NEW !!!
...

};

Proposed Resolution:

Comment for Judy Ward:
I’m not sure if it’s a good idea to let users use arbitrary
types for arithmetic operators .. for example would you
want the compiler to let them add a char* to an valarray<int>?
Also I think it might lead to ambiguities or wrong behaviour, i.e.:

valarray<double> vd;
slice_array<double> si;
vd += si;

Currently the only choice is to:
use valarray(slice_array) ctor to create a valarray
apply void operator*=(const valarray<T2>&) operator

With your proposal one could:
instantiate a void operator*=(const slicearray<double>&)
operator*=

I’m not positive if you would get an ambiguity error from the
compiler or if it would choose the wrong thing (the second one).

Comment for Daveed Vandevoorde <vandevod@cs.rpi.edu>:
Indeed, the example that I showed (in pre-Tokyo discussions, I believe)
is:

valarray<int> a;
valarray<valarray<int> > b;
// ...
b += a;

Is the latter a scalar assignment f a mixed-type vector-assignment?

Mixed-type operations really bring a lot of trouble (I tried to implement
them --- I think valarray<Troy> 1.x may still have that feature --- but
I found that it leads to extreme mess, e.g., when debugging numerical code).

Proposed Resolution:

Close this issue!

Requestor: Nicolai Josuttis
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/025
Title: should STL-like semantics be added to valarray?
Section: 26.3 New
Status: active
Description:

- Perhaps it would be senseful to have as much container support
as possible. At least begin(), end() and push_back() and insert()
were VERY senseful for copying values into and out of a valarray
(push_back() for back_inserter).

Comment for Daveed Vandevoorde <vandevod@cs.rpi.edu>:
begin() and end() are easy to specify (and I think they should indeed be
added and defined as &a[0] and &a[0]+a.size() respectively), but
valarray is specifically _not_ a dynamic array. So I don’t think operations
that implicitly resize a valarray should be included.

Comment from Nicolai:
As Daveed wrote, push_back() and insert() are a problem as
valarray is specifically _not_ a dynamic array.
The reason for the latter is to have an easy interface to create the arrays
i want to do numerical stuff with.
At the moment I see only the chance to use a T* array or to set
the values element by element.
But i think in practice reading some values and do some numerical operations
would be a normal usage.
Or to write it in another form: What’s the best/normal way to prepare valarrays
for
numerical operations ?

Proposed Resolution:

Section 26.3.1

Add:
Allocator argument to valarray
Allocator default arg to constructors
// types
(look in section 21.1.13 -- add all the typedefs

from size_type to const_reverse_iterator)

// iterators
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

Add new Section 26.3.1.?
copy section 21.1.1.5 (substituting valarray instead of basic_string)

See also related Issue 26/039.

Requestor: Nicolai Josuttis
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/026
Title: should sum() be a template?
Section: 26.3 New
Status: active
Description:

- sum() should be a template for function objects like accumulate.
Or it may be even unnecessary. If begin() and end() would exist,
you could use accumulate() then.

Comment for Daveed Vandevoorde <vandevod@cs.rpi.edu>:
The need for sum(...) is common enough to warrant its own function.
However I agree (I submitted this during the CD1 public comment period)
that a general ‘‘reduce(...)’’ function taking a functor would be nice.
I also think ‘‘apply’’ should be modified in this way.

Proposed Resolution:

Add these as valarray non-member functions.

Add:

Section 26.3.2.5 valarray application functions

template<class T, class F> T reduce(const valarray<T> & a, const F& f);

F must be a function object for which the binary function-call operator()(x, y)
is applicable when x and y are of type T. Let f(x, y) by denoted by
x @ y, and a.size() == N. Then:

reduce(a, f) == a[0] @ a[1] @ a[2] @ ... @ a[N-1]

where the grouping is unspecified (i.e., this could be evaluated
left-to-right, right-to-left or by adding any valid set of
parentheses).

template<class T> T sum(const valarray<T> & a);

The result of sum(a) is equal to reduce(a, std::plus). std::plus is
described in Section 20.3.2 [lib.arithmetic.operations].

template<class T, class F> valarray<T> apply(const valarray<T>& a, const F& f);

F must be a function object for which a unary function-call operator()(x)
exists and the function returns an array r such that r[i] == f(a[i]).

template<class T, class F>
valarray<T> apply(const valarray<T>& a, const valarray<T>& b, const F& f);

F must be a function object for which a binary function-call operator()(x,y)
is applicable when x and y are of type T. The function returns an array r
such that r[i] == f(a[i], b[i]).

Requestor: Nicolai Josuttis
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/027
Title: should gslices be changed/removed?
Section: 26.3 New
Status: active
Description:

To: C++ libraries mailing list
Message c++std-lib-4673

Hello,

Since Santa Cruz I’ve been implementing most of the valarray functionality
and now I have general slices as well (though they’re unacceptably
inefficient... but that’s not the issue I would like to raise here).

Along with each valarray-feature, I also try to write a small program
demonstrating a reasonable use for it. However, I could not find such
a use for general slices. The current WP mentions that they are useful
for the implementation of ‘‘multidimensional arrays’’, but I found it
far easier to implement those directly on top of valarrays.

Has anyone else used gslices in any practical way?

I attribute the problems I mention at least in part to the following:
. gslices are no valarrays and more limited in functionality
. gslices have no corresponding indexing scheme
. the ‘‘number of dimensions’’ of a gslice is a run-time
quantity, which seriously their use (must synthesize local
valarrays)

Wrt. the last point I wonder if this stands in the way of direct
compiler support?

Here are some of the solutions I can think of:
1) Do nothing: this is not harmful, but I expect no-one will

seriously want to use gslices and they will thus
be a unnecessary burden to implementors.

2) Drop gslices: this is not harmful either unless someone has
already planned a serious project that requires
them.

3) Replace the gslice functionality by multidimensional valarrays:
Although I think multidimensional valarrays are what many
really want, I don’t think anyone wants to work out a complete
design in this round of standardization. However, I think a
careful approach will allow a future extension in this sense.

I have a few more valarray issues that I hope to bring up in the next

few weeks, but this one seemed like a good start ;-)

Daveed

Proposed Resolution:

Drop gslice and gslice_array -- Remove Sections
26.3.5 and 26.3.6

Remove functions that use gslice_array in valarray section
26.3.1 (i.e. do a search for "gslice" and remove everything)

Requestor: Daveed Vandevoorde
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/028
Title: rename valarray::length() to valarray::size()
Section: 26.3 New
Status: active
Description:

I propose to rename:

size_t length() const;

to:

size_t size() const;

to keep consistency with other container-like things.

Proposed Resolution:

Search for all instances of "length" in Section 26.3
and change it to "size".

Requestor: Daveed Vandevoorde
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/029
Title: valarray::operator|| and valarray::operator&&
Section: 26.3 New
Status: active
Description:

Should operator|| and operator&& really be overloaded
for arrays? If yes, shouldn’t the return-type be an array of bool?

My proposal: drop operator|| and operator&& since the short-circuit
principle cannot be emulated for user-defined types.

Proposed Resolution:

Remove operator|| and operator&& from 26.3.2.1
OR change the return type to valarray<bool>

Requestor: Daveed Vandevoorde
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/030
Title: fix up what headers are included by complex,valarray, and numeric
Section: 26.3 and 26.4 New
Status: active
Description:

These headers do not specify what other C++ headers they must include.

Proposed Resolution:

In the synopsis for complex (26.2), add:
#include <iosfwd>
In the synopsis for valarray(26.3), add:
#include <cstddef>
In the synopsis for numeric (26.4) add:
#include <utility>
#include <iterator>

Requestor: Judy Ward
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/031
Title: should valarray unary ops be non-members?
Section: 26.3 New
Status: active
Description:

I noticed that valarrays treat unary operators as member
functions, whereas complex treats them as regular functions.

Proposed Resolution:

I think it is better to have them be regular functions since
normal conversions could be applied.

Remove the unary operator declarations from inside the class
valarray in Section 26.3.1.

Move Section 26.1.3.5 to Section 26.3.2 (possibly 26.3.2.1?)

replacing the decls:

valarray<T> operator+() const;
valarray<T> operator-() const;
valarray<T> operator~() const;
valarray<T> operator!() const;

with:
template <class T> valarray<T> operator+(const valarray<T>& lhs) const;
template <class T> valarray<T> operator-(const valarray<T>& lhs) const;
template <class T> valarray<T> operator~(const valarray<T>& lhs) const;
template <class T> valarray<T> operator!(const valarray<T>& lhs) const;
(this one might have to be changed to return valarray<bool> see Issue 26/032)

Requestor: Daveed Vandevoorde
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/032
Title: Should valarray::operator! return valarray<bool> not valarray<T>?
Section: 26.3 New
Status: active
Description:

Proposed resolution:

Change return type of valarray::operator! in Section 26.3 to valarray<bool>.

Requestor: Daveed Vandevoorde
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/033
Title: clarify definition of boolean mask subset operator
Section: 26.3 New
Status: active
Description:

Another valarray issue. The ‘boolean mask subset operator’
(operator[] taking an array of bools) currently has a somewhat
bizarre definition (depending on whether it is applied to a
const or to a non-const array). I suspect that what was really
aimed for was ‘assignment masking’ (because some architectures
indeed have hardware to mask operations on a per element basis),
i.e. the current semantics when the operator is applied to a
non-const array.

Proposed resolution:

To resolve and clarify this issue, I propose two measures:

1) drop the const member-operator[](const valarray<bool>&);

2) rename the non-const version to ‘mask(const valarray<bool>&)’
to emphasize the different character of this function
compared to the subset-selectors.

In Section 26.3.1 and Section 26.3.1.4 remove:
valarray<T> operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&) const;

Add to Section 26.3.1:
mask_array<T> mask(const valarray<bool>&);

Add to Section 26.3.1.7:

mask_array<T> mask(const valarray<bool>& v);

1 This function returns an object of type mask_array<T> with reference
semantics to the *this array. The elements of *this at positions i
for which v[i] == false will be masked off when performing assignments
and computed assignments to the returned object.

2 The behavior is undefined if this->size() != v.size().

Requestor: Daveed Vandevoorde
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/034
Title: ambiguity with complex::operator!=?
Section: 26.2 New
Status: active
Description:

operator!= with two complex operands is ambiguous in the
presence of template operator!=(T,T)

Proposed resolution:

Doesn’t partial ordering of function templates fix this?

Requestor: P.J. Plauger
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/035
Title: constraints on complex type T should be specified?
Section: 26.2.1 New
Status: active
Description:

Template class complex needs to clarify what the constraints
on the type T for which it can be instantiated. It looks like
you must be able to perform arbitrary arithmetic mixed with
floating-point operands. It suggests that T() behaves like a
numeric zero. But nothing is said. Nor is it clear how an
implementation is expected to compute the hyperbolic cosine
of an arbitrary type T. More words are desperately needed here.
the simplest reasonable constraint is that T is a type that
defines conversions to and from one of the floating-point types --
double for best performance on average, long double for maximum
precision.

Proposed resolution:

Requestor: P.J. Plauger
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/036
Title: T should be const T& in complex mathematical ops

Section: 26.2.1 New
Status: active
Description:

The operator+, operator-, etc. declared in Section 26.2.1
and Section 26.2.5 and Section 26.2.7 currently have the scalar as
type T. Shouldn’t they be const T&? This is consistent with
the member functions =,+=, etc.

Proposed resolution:

Remove box 96. Make changes described above.

Requestor: Daveed Vandevoorde
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/037
Title: template <class T> shouldn’t appear in detailed descriptions
Section: 26.2.3 New
Status: active
Description:

The "template<class T>" shouldn’t appear on the declaration:
"template<class T> complex(T re = T(), T im = T());"
Alternatively, the qualifier complex:: should be added, but
this departs from earlier style. Same comments apply for
later members in 26.2.4.

Proposed resolution:

Requestor: P.J. Plauger
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/038
Title: description of returns from arg()
Section: 26.2.6 New
Status: active
Description:

The template arg(complex) returns should say:

"the phase angle of x, or atan2(imag(x),real(x))."

The template conj(complex) returns should say:

"the complex conjugate of x, complex(real(x), -imag(x))."

Proposed resolution:

Currently they only say "the phase angle of x" and
"the complex conjuate of x". Does the or part add anything?

Requestor: P.J. Plauger
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/039
Title: valarray::operator T* and operator const T* cause ambiguities
Section: 26.3.1 New
Status: active
Description:

valarray::operator T* and valarray::operator const T*() cause
numerous ambiguities, Should be omitted or replaced by:

T* begin();
const T* begin() const;

See also issue 26/025.

Proposed resolution:

Requestor: P.J. Plauger
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/040
Title: non-normative commentary should be moved to notes
Section: 26.3.1.1 New
Status: active
Description:

Much of valarray() Effects is non-normative commentary. Should
be moved to Notes.

Proposed resolution:

Last two sentences of valarray() Effects should be in Notes.
Last sentence of valarray(const T*, size_t) should be in Notes.
Last two sentences of valarray(const valarray<T>&) should be in Notes.

Requestor: P.J. Plauger
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/041
Title: no description of ~valarray<T>
Section: 26.3.1.1 New
Status: active
Description:

~valarray() has no stated semantics.

Proposed resolution:

Requestor: P.J. Plauger
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/042
Title: non-normative commentary should be moved to notes
Section: 26.3.1.1 New
Status: active
Description:

Much of valarray() Effects is non-normative commentary. Should
be moved to Notes.

Proposed resolution:

23.3.1.1:
Last two sentences of valarray() Effects should be in Notes.
Last sentence of valarray(const T*, size_t) should be in Notes.
Last two sentences of valarray(const valarray<T>&) should be in Notes.

23.3.1.3:
Last sentence in paragraph 4 should be in Notes.

Requestor: P.J. Plauger
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/043
Title: clarification to valarray min/max
Section: 26.3.2.3 New
Status: active
Description:

Description of valarray min/max is unclear on which
of these functions uses operator< and which operator>.
The STL convention is to require only operator< for both.
The description should be at least clarified, if not
made simpler and more consistent.

Proposed resolution:

Requestor: P.J. Plauger
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/044
Title: no normative description of semantics of valarray<T>::operator[](slice)
Section: 26.3.4 and 26.3.5 New
Status: active
Description:

The behaviour of valarray<T>::operator[](slice) and
valarray<T>::operator[](gslice) are described only in
examples, which is non-normative.

Proposed resolution:

Requestor: P.J. Plauger

Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/045
Title: partial_sum semantics wrong
Section: 26.4.3 New
Status: active
Description:

Template function partial_sum does not "assign to every iterator i...".
It "assigns to *i for every iterator i ...". It also should clarify
that the first element of the sequence is simply *first.

Proposed resolution:

Change wording as suggested above.

Requestor: P.J. Plauger
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/046
Title: box 97 - remove
Section: 26.2.1 New
Status: active
Description:

Andrew Koenig has a note that he collapsed all the constructors
with default args to match the detailed description.

Proposed resolution:
Remove box.

Requestor: Andrew Koenig
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/047
Title: box 98 -- description of ranges/branch cuts
Section: 26.2.7 New
Status: active
Description:

Description of ranges is wrong?

Proposed resolution:
If issue 26/016 passes, we should remove this box and the two
paragraph aboves it.

Requestor: Daveed Vandevoorde
Owner: Judy Ward

Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/048
Title: box 99 -- no exceptions in valarray
Section: 26.3 New
Status: active
Description:

Box 99 says "The descriptions of valarray and the associated classes
lack any discussion of possible exceptions."

Proposed resolution:

Remove box which I think leaves the implementor free to add them
if he/she wishes.

Requestor: ?
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/049
Title: exceptions in complex
Section: 26.2 New
Status: active
Description:

When I raised this issue before you suggested I come up with something
specific. So I looked at the complex class, which is completely silent
on error handling (other than for the I/O operators). Does this mean that

there are no error conditions, or

error conditions result in undefined behavior, or

errors are reported using the C math library method, or

errors will result in (predefined?) exceptions being thrown

If the answer is "it’s all up to the implementation", how is anyone supposed
to write portable code that uses the complex class? I don’t especially
care which of these is chosen, just that the WP says something.

Further mail:

Subject: Follow-up on Issue 26/049

Judy,

Regarding my previously raised Issue 26/049 about error handling in complex:

I’ve gotten ahold of the original complex design paper (N0372 = 93-0165).
It states:

The precise formulas used to implement complex arithmetic are
implementation dependent. Response to errors is also implementation
dependent. [...] Details of the semantics of each operator are the
same as in David Knaak’s "Complex Extension to C" (X3J11/92-075).

The referenced C document also makes no requirement about error handling:

An implementation may set errno but is not required to.

So clearly it was the intent of the committee that no error handling be
defined for complex. I don’t quite agree with this - while checks for
range errors can be expensive (underflow and overflow checking), checks for
domain errors in function arguments are usually very inexpensive (one test
at the start of the function) - but so be it.

Nevertheless, I think the WP needs to say a little more about this than it
does now. A full-blown approach would add "Requires:" statements for
each function (e.g. for log(), "Requires: x is non-zero."), but if this
would be considered too much, I propose the following minimalist changes:

26.2 [lib.complex.numbers]

After the first paragraph ("The header <complex> defines a template class, ...")
add:

Each of these functions has its usual mathematical meaning for
complex arguments. If the argument for a function does not belong
to the usual mathematical domain of the function, the behavior
is undefined. If the result of a function is not mathematically
defined or not in the range of representable values for its type,
the behavior is undefined.

(The phrase "usual mathematical meaning" is used in the Ada 95 standard,
so presumably it is considered valid standards language.)

26.2.7 [lib.complex.transcendentals]

Remove paragraph (1):

Each of these functions returns a complex value corresponding to
the mathematical function (26.5 [lib.c.math]) computed for complex
arguments.

The reference to the C math library here was responsible for my initial
confusion in thinking complex was supposed to use errno. Attempts to
define the complex functions in terms of the C library scalar functions
won’t work (e.g. sqrt(-1.0) is an error in scalars but valid in complex).

Jonathan Schilling The Santa Cruz Operation, Inc. jls@sco.com

Proposed resolution:

Described above.

Requestor: Jonathan Schilling, jls@sco.com
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
c++std-lib-4767
c++std-lib-4770
c++std-lib-4771
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/050
Title: box 100 - clarification of motion 55
Section: 26.3.1.3 New

Status: active
Description:

A correction was made to motion 55, only the first sentence not
the first paragraph was removed in the post Santa-Cruz editing session.

Proposed resolution:

Remove box.

Requestor: Daveed Vandevoorde
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

Work Group: Library
Issue Number: 26/051
Title:Title: define return of complex of pow(0,0)
Section: 26.2 New
Status: active
Description:

The original design of complex (N0372 = 93-0165, and by reference
X3J11/92-075) explicitly stated that the result of pow(0.0, 0.0) is
(1.0 + 0.0i).

Further analysis (provided by Steve Hobbs at digital)

The C standard states that pow(0,0) is a domain error and
its result is implementation-defined. I.e., the standard
allow any answer providing you document what you do.

The C++ draft standard seems to be quiet on this subject so I assume
it also allows any answer that is documented by the implementation.

The NCEG (Numerical C Extension Group) has published a "report"
that does not have the force of a standard but this is a recommendation
from a standards body. Their recommendation is that pow(x,0) shall
always be 1.0 even if x is 0 or if x is Infinity or if x is a NaN.

The pow function on Digital Unix and on Open VMS returns 1.0 for
pow(0,0).

Therefore my recommendation would be to follow what Rogue Wave does.
Any complex number raised to a zero power should be a 1.0 (real 1.0,
imag 0.0). This should include complex numbers whose real or
imaginary parts include 0.0, or Infinity, or NaN.

(My personal view does not agree with this recommendation--I would
return NaN--but this recommendation is compatible with the
recommendations that come from standard committees and with the
behavior of the pow in our current C implementations.)

Proposed resolution:

Add under the description of pow() in 26.2.7:

pow(0,0) returns (1,0).

Requestor: Jonathan Schilling, jls@sco.com
Owner: Judy Ward
Emails: (email reflector messages that discuss this issue)
Papers: (committee documents that discuss this issue)

