X3J16/96- 0103R1
WE21/ N0921R1

Dependent Nanes in Tenpl ates

Aut hor: Erwin Unruh
Email : erwi n.unruh@rch. sni . de
Si enens N xdorf information systens

Revision 1: | conmitted to specify the rules for dependent names at the
Stockhol mmetting. Unfortunately | was not able to specify those changes
inaquality I wuuld like themto be. I know the WP changes are not conplete
and need sone nore work by the editor. | think the intent is clear

Based on a new approach for the tenplate conpilation nodel, a change in
the rul es rgardi ng dependent nanes was nmade. | used this situation to
thi nk about the rules and tried to conplete them | send those rules to
the reflector.

Unfortunately | was not able to refine the rules in time for the mailing, so
| just put the refelctor nmessage in the nmailing. If |I have time | may rework
this paper so we have a better version for the neeting.
Ref | ect or nessage ext-3611
2. Dependent Nanes

We propose a sinplification of the definition of "dependent nane."

The principal goal is to make this concept nore strictly syntactic,
as suggested in Sean Corfield s editorial box (Box 28).

VVVVYV

I wel cone this approach (independent fromthe rest of the proposal). But |

think the rules given are not accurate enough. | will give a nore precise set
of rules.

When working on this, | nade a subtle change in ny perception. The usual view
is that a type is dependent. | gave up that idea and say that a "type-id"

is dependent. It may be questionabl e whether T in
tenplate < typename T > void foo(T);
foo(1l);

is atype or not. | think it is a placeholder for a type. So the question
whether T is int is meaningless for the definition per se. It becomes a neaning
when processing an instantiation.

On the sane grounds | defined the attribute of being dependent only for
expressions, not for their type. The result, of whether a certain piece of

code i s dependent is not changed.

When drafting the following rules | nade a few substantive changes:

- | considered type, value and tenpl ate parameters

- The original wording does allow a nane to be dependent in one instantiation
and not be dependent in another. | followthe rule that a nanme is dependent
inall or no instantiation. So the attribute can be determ ned | ooking at
the definition al one.
Thi s nakes sone progranms ill-formed. They are:
- where the tenplate paraneter is a type already used in the tenplate

void f(int);
tenpl ate<class T> void foo(T t){
f(1.0); /1 not dependent

} il
voi d f(doubl e);
foo(1.0);

- where a conversion to a tenplate paraneter is used to call a function

class A{ };
class B { operator A(); };
tenplate <class T> void foo(T t) {
B b;
f(b);

}
void f(A);
foo(A);

- | tried to get a sonehow m nimal set of dependent names. So as exanpl e
f(sizeof (T))

i s not dependent, because the argument type is int.

- | introduced 3 targets of "dependent": a type-id being (type-)dependent, when
the represented type depends; an expression being type-dependent, when its
type depends; and a constant-expression being val ue-dependent, when its val ue
depends.

I amusing the term"type-id" to describe a syntactic construct describing
atype. It is not identical to the syntactic termtype-id. The editor is
requested to use a nore appropiate termfor this term

The rul es are :
EIR IR IR I R S IR S IR I I I b IR R R R R S I S IR I I R R R R R I O R S R I b I b R R I b I b b S b b I b I b I b I b b b b b

Inside a tenpl ate sonme constructs have semantics which are different in differen
t

instantiations. W say that such a construct "depends" on the tenplate paraneter
S.

The follow ng constructs can depend:

- a qualified-id whi ch can denote different entities
- a type-id whi ch can denote different tyes
- an expression whi ch can have a different type

- a constant - expressi on which can have different val ues
- an unqualified name whose binding can change

The exact rules are as follows, where T stands for a type-id representing
a type, E stands for an expression, P stands for a paraneter of the tenplate,
X stands for an identifier and TM stands for a tenplate:

The rules for type-id also cover class-id used for scoping.
A type-id depends on a tenplate paraneter P if it is of the form

cv T and T depends on P
T* cv opt and T depends on P
T& and T depends on P
Tl T2::* cv opt and T1 or T2 depends on P
T[E] and T depends on P or E val ue-depends on P
T(T1, .. Tn) cv opt throwm ..) opt
and T or one of T1 .. Tn depends on P

Not e: exception specification does not give

dependency

End Not e.
TWP1, .. Pn> and Pis TMor one of P1 to Pn depends on P
T1 :: T2 and T1 or T2 depends on P

T and Tis Por Tis a typedef declared with a type-id which

depends on P

A tenplate tenplate argunent depends on Pif it is either P or of the form
T:: TM where T depends on P

A non-integral non-type tenplate argunent depends on P if it is of the form
T::x or &T::x where T depends on P, or when the argument is P

A type tenpl ate argunment depends on P if it (as a type-id) depends on P

An integral non-type tenplate argunent depends on P if the argunent (as

a constant expression) val ue-depends on P

An expression type-depends on a tenplate paraneter P if it is of the form

this and the class type of the menber function depends on P
T::x and T depends on P
X and x is declared with a type-id which depends on P
operator T and T depends on P
El[E2] and E1 or E2 depends on P
E(El, .. En) and E or one of E1 .. En depends on P
T(El, .. En) and T depends on P
(TME and T depends on P
static_cast<T>(E) and T depends on P
const _cast <T>(E) and T depends on P
reinterpret_cast<T>(E) and T depends on P
dynamni c_cast <T>(E) and T depends on P
new T (E1, .. En) and T depends on P
new (E1, .. En) T (EE1l, .. EEn)
and T depends on P

Not e:

Whet her a cast is dependent depends solely on the type being cast to,
not whether the expression being cast depends. The sane is true for new
expressions, where the resulting type does not depend on pl acenent
expressions or the argunments to the constructor

End Not e

E. X

E- >x and E depends on P

E. tenplate opt T::x

E-> template opt T::x and E depends on P or T depends on P

E++ and E depends on T

E-- and E depends on T

op E and E depends on P and op is one of + -, (tilde), !, *, &
++, --

El op E2 and E1 or E2 depends on P and op is one of +, -, *, [, %
N& | = <, > 4=, -= *= [= OF "= &=, |:, <<, >>, >>=)
<<=, ==, =, <=, >= && ||, (comm), ->*

E? EL: E2 and E1 or E2 depends on P

(E) and E depends on P

Not e:

The follow ng forms of expressions never type-depend on a P

E. pseudo-destructor-call because its result is void

E- > pseudo-destructor-call because its result is void

literal because its type is fixed

typei d(T)

typei d(E) because its tye is typeinfo&

delete E

delete [] E because its type is void

End Not e.

An const ant - expressi on val ue-depends on a tenplate paraneter Pif it is of
the form

T::x and T depends on P

X and x is P (where P is a val ue-paraneter)

X and x is declared with a type-id which depends on P

X and x is an integral constant initialized with an expression
whi ch val ue-depends on P

T(E)

(ME

static_cast<T>(E) and T depends on P or E val ue-depends on P
const _cast <T>(E) and T depends on P or E val ue-depends on P
reinterpret_cast<T>(E) and T depends on P or E val ue-depends on P
dynamni c_cast <T>(E) and T depends on P or E val ue-depends on P

si zeof (T) and T depends on P

si zeof E and E type-depends on P

op E and E val ue-depends on P

El op E2 and E1 or E2 val ue-depends on P

E? ElL: E2 and E or E1 or E2 val ue-depends on P
Not e:

An expression of the form
of fsetof (T, x)
depends on P if T or x depend on P. However, offsetof is not part of the
expression syntax and so special rule for it does not exist.
End Not e.
Not e:
The rules specify that "sizeof (T) ? 2 : 2" is considered val ue-dependend,
even if the value will always be 2.
End Not e.

Rk R Sk S S S S O O R IR S S S kR R O O R O I

still open: when is a non-integral tenplate-val ue-argument dependent?

OPEN: The above rules do not cover inplicit scoping, as are cl asses,
functions and data nenber of a dependent tenplate class. See

tenpl at e<cl ass T> class C {

class D{};

void f();

int i;

void foo(){
C c; /'l dependent ?
i ++; /'l dependent ?
f(); /'l dependent ?

H
(After a second thought | do doubt whether these should be considered
dependent. | amnot sure!)

When scanning a tenplate definition, |ookup all nanes present. If a
non-qual i fi ed nanme appears in the position

name (E1, .. En)

wi thin an expression

and the | ookup resolves to a set which only contains functions
(the set may be enpty)

and one of the expressions El to En type-depends on a paraneter P of
the tenpl ate

then the nane is | ooked up again in the context of the instantiation

I leave open the semantics of the second | ookup and the rel ationship of
first and second | ookup. They may follow the WP rules or some of the
new y proposed rul es.

The list for val ue-dependency is shorter than for type-dependency because
a whol e set of constructs are not allowed in constant expressions. The
intent is that if an expression type-depends on P and is a valid constant
expression, than it al so val ue-depends on P.

The rules clearly favour the first |ookup. If the first |ookup finds a type
or a variable, a second |lookup is not tried. This does even hold if that
vari abl e does not have an operator().

They have the big advantage (especially for conpiler vendors) that the set
of names which may be dependent is clearly defined at the point of the
tenpl ate definition.

I know that the rul es above need work to be fornmed into standardeese. | al so
think that there are a few m stakes in the rul es.

Andy: (O whoever does the editing): Check, whether the using of
"depend on tenplate paraneter” is consistent and where argunent is used
i nstead of paraneter.

Wor ki ng paper changes:

in 14.6 [tenp.res]

- delete the first sentence of paragraph 2 (two and a half |ine)

- add a reference to 14.6.2 [tenp.dep] after the word "depends"” in the
former second sentence of paragraph 2.

- renove Box 20.

- replace paragraphs 7 and 8 by

When | ooking for the declaration of a name used in a tenplate definition
the usual |ookup rules (_??_) are applied.

A qualified nanme which depends on a tenplate paraneter is not |ooked

up within the tenplate definition

I f one operand of an operator type-depends on a tenplate parameter, the
| ookup is restricted to the operators found during "scoped | ookup" and
| ookup in the namespace of the class of a non-dependend operand. An
additional |ookup will be done during instantiation (see [tenp.???])

If an id-expression is used as the function (???) and the | ookup resol ves
to a (possibly enpty) set which only contains functions, and one of the
argunents type-depends on a tenplate paraneter, an

additional |ookup will be done during instantiation (see [tenp.???])

in 14.6.2 [tenp. dep]

- put the text between the two starred lines at the beginning of that
subsecti on

- renove paragraphs 2 through 6 (keeping the exanples in paragraphs 2 and 4
may be a good idea)

- renove paragraph 1 (its semantics are now covered by 14.6.4 as introduced
by John WI ki nsons wording in X3J16/96-0155 = W=21/ N0973)

