X3J16/ 96- 0103
WE21/ N0921

Dependent Nanes in Tenpl ates

Aut hor: Erwin Unruh
Email : erw n.unruh@rch. sni . de
Si emens N xdorf information systens

Based on a new approach for the tenplate conpilation nodel, a change in
the rul es rgardi ng dependent nanmes was made. | used this situation to
think about the rules and tried to conplete them | send those rules to
the reflector.

Unfortunately | was not ably to refine the rules in time for the mailing, so
I just put the refelctor nessage in the mailing. If |I have time | may rework
this paper so we have a better version for the neeting.
Ref | ect or nessage ext-3611
2. Dependent Nanes

We propose a sinplification of the definition of "dependent nane."

The principal goal is to nake this concept nore strictly syntactic,
as suggested in Sean Corfield s editorial box (Box 28).

VVVYVYV

I wel cone this approach (independent fromthe rest of the proposal). But |

think the rules given are not accurate enough. | will give a nore precise set
of rules.

When working on this, | nade a subtle change in ny perception. The usual view
is that a type is dependent. | gave up that idea and say that a "type-id"

is dependent. It may be questionable whether T in
tenplate < typename T > void foo(T);
foo(1l);

is atype or not. | think it is a placeholder for a type. So the question
whether T is int is neaningless for the definition per se. It becones a neaning
when processing an instantiation.

On the same grounds | defined the attribute of being dependent only for
expressions, not for their type. The result, of whether a certain piece of

code is dependent is not changed.

When drafting the following rules | nade a few substantive changes:

- | considered type, value and tenpl ate paraneters

- The original wording does allow a nane to be dependent in one instantiation
and not be dependent in another. | followthe rule that a name is dependent
inall or no instantiation. So the attribute can be determ ned | ooking at
the definition al one.
This makes sone prograns ill-forned. They are:
- where the tenplate paraneter is a type already used in the tenplate

void f(int);
tenpl ate<class T> void foo(T t){
f(1.0); /1 not dependent

} il
voi d f(doubl e);
foo(1.0);



- where a conversion to a tenplate paraneter is used to call a function

class A{ };
class B { operator A(); };
tenplate <class T> void foo(T t) {
B b;
f(b);

}
void f(A);
foo(A);

- | tried to get a sonehow m nimal set of dependent names. So as exanpl e
f(sizeof (T))

i s not dependent, because the argument type is int.

- | introduced 3 targets of "dependent": a type-id being (type-)dependent, when
the represented type depends; an expression being type-dependent, when its
type depends; and a constant-expression being val ue-dependent, when its val ue
depends.

I amusing the term"type-id" to describe a syntactic construct describing
a type. It is not identical to the syntactic termtype-id.

The rules are :

EIE IR I R S R R I R I R I O I R R I R R O R I R R S R R R O R

The rules for type-id also cover class-id used for scoping.
A type-id depends on a tenplate paraneter P if it is of the form

cv T and T depends on P
T* cv opt and T depends on P
T& and T depends on P
T1 T2::* cv opt and T1 or T2 depends on P
T[ E] and T depends on P or E val ue-depends on P
T(T1, .. Tn) cv opt throwm .. ) opt
and T or one of T1 .. Tn depends on P

not e: exception specification does not give
dependency

TM<P1, .. Pn> and Pis TMor one of P1 to Pn depends on P
when the corresponding paraneter is a type, the depedency of
a type-idis used; if it is an integral val ue,
val ue- dependency is used; if it is a tenplate or a
non-i ntegral val ue, see bel ow

T1 :: T2 and T1 or T2 depends on P

T and Tis Por Tis a typedef declared with a type-id which
depends on P

A templ ate tenplate argunent depends on P if it is either P or of the form
T:: TM where T depends on P

A non-integral non-type tenplate argunent depends on Pif it is of the form
T.:x or &T::x where T depends on P

(( or when the argunent is P) to be added if they are all owed)

An expression type-depends on a tenplate paraneter P if it is of the form

this and the class type of the nenber function depends on P
T:: X and T depends on P

X and x is declared with a type-id which depends on P
operator T and T depends on P

E1l[ E2] and E1 or E2 depends on P



E(EL, .. En) and E or one of E1 .. En depends on P

T(E)

(ME

.._cast<T>(E) and T depends on P (regardl ess of E)
new (E1) T (E2) and T depends on P

E. x

E- >x and E depends on P

E T::x

E->T:: X and E depends on P or T depends on P
E++

E- -

op E and E depends on P

El op E2 and E1 or E2 depends on P

E? EL: E2 and E1 or E2 depends on P

An const ant - expressi on val ue-depends on a tenplate paraneter Pif it is of
the form

T::x and T depends on P

X and x is P (where P is a val ue-paraneter)

X and x is declared with a type-id which depends on P

X and x is an integral constant initialized with an expression
whi ch val ue-depends on P

T(E)

(ME

._cast<T>(E) and T depends on P or E val ue-depends on P

sizeof (T) and T depends on P

sizeof E and E type-depends on P

op E and E val ue-depends on P

El op E2 and E1 or E2 val ue-depends on P

E? EL: E2 and E or E1 or E2 val ue-depends on P

still open: when is a non-integral tenplate-val ue-argunment dependent?

When scanning a tenplate definition, |ookup all nanes present. If a
non-qual i fi ed nanme appears in the position

name ( El1, .. En)

wi thin an expression

and the | ookup resolves to a set which only contains functions
(the set may be enpty)

and one of the expressions El to En type-depends on a paraneter P of
the tenpl ate

then the nane is | ooked up again in the context of the instantiation

I leave open the semantics of the second | ookup and the rel ationship of
first and second | ookup. They may follow the WP rul es or sonme of the
newl y proposed rul es.

Rk R Rk b S S I I SRR ok b S b Rk R R R R S O O SRR Ik bk o O o

The list for val ue-dependency is shorter than for type-dependency because
a whol e set of constructs are not allowed in constant expressions. The
intent is that if an expression type-depends on P and is a valid constant
expression, than it al so val ue-depends on P.

The rules clearly favour the first |ookup. If the first |ookup finds a type
or a variable, a second |lookup is not tried. This does even hold if that
vari abl e does not have an operator().

They have the big advantage (especially for conpiler vendors) that the set
of names which may be dependent is clearly defined at the point of the



tenpl ate definition.

I know that the rul es above need work to be fornmed into standardeese. | al so
think that there are a few m stakes in the rul es.



