
1

Doc: X3J16/96-0101=WG21/N0919
Date: May 26, 1996
By: Philippe Le Mouël

Instantiation of iostreams classes
on base types

Description

The current WP does not allow instantiation of the iostreams classes on base types. The problem is located
in basic_ostream and basic_istream classes. basic_ostream overloads insertors on both the base types with
the exception of char and wchar_t types, and the character type on which the stream is instantiated.
Therefore, whenever a stream is instantiated on a base types other than char or wchar_t, a conflict arises
between the insertor of this type and the insertor of the character type. The same conflict arises for
basic_istream and extractors.

Note: This paper follows the one on “Insertion and Extraction of char, signed char and unsigned char”.

Discussion

If we want to instantiate a stream on one of the base types, we have to decide whether we want to treat the
base type as a character or as a numeric value. Jerry Schwarz pointed out two reasons to prefer
interpretation as a numeric value. “The first one is the frequency of occurrence, and the other is how easy
it is to get the other interpretation.” If we choose interpretation as a numeric value, we can get character
behavior by using the unformatted functions, but if we chose interpretation as a character, we do not have
the other option. Instantiating iostreams classes on base types, and treating insertion and extraction of
values of this type as numeric values, can be implemented by removing all the insertors and extractors
from basic_ostream and basic_istream respectively and adding the following global template functions:

template <class charT, class traits>
basic_ostream<charT, traits>&
operator <<(basic_ostream<charT, traits>& out, charT c)
{ ; }

Treat as a character (see Insertion and Extraction of char, unsigned char and signed char paper).

template <class charT, class traits>
basic_ostream<charT, traits>&
operator <<(basic_ostream<charT, traits>& out, int c)
{ ; }

Treat as an int.

template <class charT, class traits>
basic_ostream<charT, traits>&
operator <<(basic_ostream<charT, traits>& out, short c)
{ ; }

Treat as a short.

2

This pattern continues for all the base types, and the same applies to basic_istream and extractors as well.
Therefore if you do the following:

basic_ostringstream<short, char_traits<short> > out;

short b = 56;

out << b;

you will call:

template <class charT, class traits>
basic_ostream<charT, traits>&
operator <<(basic_ostream<charT, traits>& out, short c)
{ ; } // treat as a short

Which is more specialized than:

template <class charT, class traits>
basic_ostream<charT, traits>&
operator <<(basic_ostream<charT, traits>& out, charT c)
{ ; } // treat as a character

Allowing instantiation of iostreams classes on base types is only part of the story. The iostreams library
relies on locale components such as ctype and codecvt facets to perform its job. Furthermore, the default
locale imbued in both the stream and the stream buffer provide facets for only char and wchar_t types. So
in any case, we will not solve users problem when instantiating iostreams classes on base types by only
accepting the changes described above. Users will have to provide the following components for every
base types they want to instantiate iostreams on:

- class char_traits specialized on the base type
- locale ctype facet specialized on the base type
- locale codecvt facet specialized on the base type
- locale numpunct facet specialized on the base type

Another approach, is to wrap the base type in a class and to use it to instantiate the iostreams classes.
There are two major advantages with this scheme: first, we do not need to change a single line of the WP,
and users can get both numeric and character behavior when using insertors and extractors. The price to
pay for users is only a few more lines of codes which can be neglected in comparison of the number of
lines they will have to write to provide the components required by iostreams.

Proposed resolutions

1. Do not allow direct instantiation of iostreams classes on base types. In this case users will still be able
to wrap the base type in a class and to instantiate iostreams with this wrapper class. With this
solution, users will have to do some extra work, but nothing compared to providing the right
char_traits and locale components required by iostreams. This solution also makes it possible to keep
both the numeric and the character behaviors of insertor and extractor.

2. Allow instantiation of iostreams classes on base types as described above.

