
X3J16/96-0094
WG21/N0912

Template Issues and Proposed Resolutions
Revision 15

John H. Spicer

Edison Design Group, Inc.

jhs@edg.com

May 28, 1996

Revision History

Version 1 (93-0039/N0246) { March 5, 1993: Distributed in Portland and in the post-Portland

mailing.

Version 2 (93-0074/N0281) { May 28, 1993: Distributed in pre-Munich mailing. Re
ects ten-

tative decisions made in Portland and additional issues added after the Portland meeting. In

Portland, the extensions working group reviewed most of the issues from 1.1 to 2.8 and also

reviewed 6.3.

Version 3 (93-0123/N0330) { September 28, 1993: Distributed in pre-San Jose mailing. Re
ects

decisions made in Munich. No new issues were added in this revision.

Version 4 (93-0183/N0330) { November 24, 1993: Distributed in post-San Jose mailing. Re-


ects decisions made in San Jose. Note that issues that have been closed as a result of formal

motions in San Jose will be omitted from subsequent versions of this paper. In San Jose the

extensions working group identi�ed a number of issues that required additional work. These

issues have not been addressed in this paper but will be addressed in the next revision.

Version 5 (94-0020/N0407) { January 25, 1994: Distributed in the Pre-San Diego mailing. The

41 closed issues have been removed, 20 have been added, and a few existing ones have been

updated.

Version 6 (94-0068/N0455) { March 25, 1994: Distributed in the Post-San Diego mailing. Re-


ects decisions made in San Diego. Note that issues that have been closed as a result of formal

motions in San Diego will be omitted from subsequent versions of this paper. In San Diego the

extensions working group identi�ed a number of issues that required additional work. These

issues have not been addressed in this paper but will be addressed in the next revision.

Version 7 (94-0096/N0483) { June 1, 1994: Distributed in the Pre-Waterloo mailing. The 24

issues closed in version 6 have been removed and 16 new issues have been added.

Version 8 (94-0125/N0512) { November 3, 1994: Distributed in Valley Forge and in the post-

Valley Forge mailing. Re
ects decisions made in Waterloo. This version contains only issues

closed in Waterloo. Version 9 will be distributed at the same time as version 8 and will contain

the open issues and new issues.

Version 9 (94-0200/N0587) { November 5, 1994: Distributed in Valley Forge and in the post-

Valley Forge mailing. Issues closed in version 8 have been removed and new issues have been

added.

Version 10 (94-0212/N0599) { November 25, 1994: Distributed in the post-Valley Forge mail-

ing. Re
ects decisions made in Valley Forge. Includes a number of new issues supplied by



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 2

Erwin Unruh.

Version 11 (95-0007/N0607) { January 31, 1995: Distributed in the pre-Austin mailing. In-

cludes a few new issues.

Version 12 (95-0101/N0701) { May 28, 1995: Distributed in the pre-Monterey mailing. Re
ects

decisions made in Austin. 9 issues have been closed, 12 new issues have been added.

Version 13 (95-0158/N0758) { July 20, 1995: Distributed in the post-Monterey mailing. Re-


ects decisions made in Monterey.

Version 14 (96-0023/N0841) { January 30, 1996: Distributed in the pre-Santa Cruz mailing.

Version 15 (96-0094/N0912) { May 28, 1996: Distributed in the pre-Stockholm mailing. Re-


ects decisions made in Santa Cruz and contains new issues.

Introduction

This document attempts to clarify a number of template issues that are currently either unde-

�ned or incompletely speci�ed. In general, this document addresses smaller issues.

Of the issues that are addressed, some are covered in far more detail than others. Some of

the resolutions represent solid proposals while others are more like trial balloons. The more

tentative proposals are so designated in the body of the document.

Even those resolutions that represent fairly solid proposals are only proposals. This doc-

ument is not intended as a formal proposal of any speci�c language changes. Rather, it is

intended as to be used as a framework for discussion of these issues. Hopefully this will ulti-

mately result in formal proposals for language changes.

Organization of the Document

The document is organized in sections. Each section consists of a list of questions. Each

question has an answer, a status, the version number of the �rst version of this document that

included the question, and the version number of the last change in the question. This allows

the reader to skip over questions that have not changed since the last time he or she read the

document.

Acknowledgements

I would like to thank Bjarne Stroustrup who contributed greatly by providing issues, reviewing

and improving upon proposed resolutions, and providing insights into other language changes

that may impact templates. Thank you to Erwin Unruh, who has contributed to many of

the issues, and who also contributed the \Erwin Unruh's Issues" section. Thank you to Mike

Karasick and Lee Nackman (and possibly others) from IBM who contributed issues concerning

name binding and member functions of partial specializations of class templates.



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 3

Summary of Issues

Because this is a rather long document this summary is provided to allow the reader to quickly

�nd issues in which he or she may be interested. Note that closed issues have been removed

from the body of the paper. Please refer to a previous version of the paper for additional

information on these issues.

Template Parameters

1.1 Can template parameters have default arguments? (closed in version 4)

1.2 Where can default arguments for template parameters be speci�ed? (closed in

version 4)

1.3 Can a type parameter be used in the type declaration of a nontype parameter?

(closed in version 4)

1.4 Can a nontype parameter as used above have a default argument? (closed in version

4)

1.5 Should it be possible to redeclare a template parameter name to mean something

else inside a template de�nition? (closed in version 4)

1.6 Can the name of a nontype parameter be omitted? (closed in version 4)

1.7 Can the name of a type parameter be omitted? (closed in version 4)

1.8 Can a typedef appear in a template declaration? (closed in version 4)

1.9 Can a nontype parameter have a reference type? (closed in version 4)

1.10 Are quali�ers allowed on nontype parameters? (closed in version 4)

1.11 May a template parameter have the same name as the class template with which it

is associated? (closed in version 4)

Class Template References

2.1 Can a nontype parameter that is not a reference be used as an lvalue or have its

address taken? (closed in version 4)

2.2 Can the class template name be used as a synonym for the current instantiation

inside a class template? (closed in version 4)

2.3 Can a class template have a template parameter as a base class? (closed in version

4)

2.4 Can a local type be used as a type argument of a class template? (closed in version

4)

2.5 Can a character string be a nontype argument? (closed in version 4)



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 4

2.6 Can any conversions be done on nontype actual arguments of class templates?

(closed in version 6)

2.7 What causes a template class to be instantiated? (closed in version 4)

2.8 How can a class template name be used within the de�nition of the template?

(closed in version 6)

2.9 The previous rule makes possible runaway recursive instantiations. How should an

implementation prevent this? (closed in version 5)

2.10 At what point are names injected? (closed in version 6)

2.11 Does an array parameter decay to a pointer type? (closed in version 6)

2.12 What can be used as an actual argument for a parameter that is a reference? (closed

in version 4)

2.13 Can template parameters be used in elaborated type speci�ers? (closed in version

4)

2.14 Can a class template or function template be declared as a friend of a class? (closed

in version 6)

2.15 Can template arguments be supplied in explicit destructor calls? (closed in version

4)

2.16 What happens if the same name is used for a template parameter of an out-of-class

de�nition of a member of a class template and a member of the class? (closed in

version 6)

2.17 What happens if the name of a template parameter of a class template is also the

name of a member of one of its base classes? (closed in version 6)

2.18 When must a type used within a template be completed? (closed in version 6)

2.19 Must a specialization declaration precede the use of a class template in a context

that requires only an incomplete type? (closed in version 6)

2.20 Proposal to defer error checking for operator ->. (closed in version 6)

2.21 When are names considered known in a template dependent base class? (closed in

version 6)

2.22 Proposed revision to rules for explicit instantiation of all class members. (closed in

version 8)

2.23 How does name injection interact with the semantics of friend declarations? (with-

drawn - last in version 10)

2.24 Class template partial specialization clari�cation. (closed in version 13)

2.25 May a nested class within a class template be de�ned outside of the template?

(closed in version 13)



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 5

2.26 Question: May a class nested within a template be declared as a template friend?

(closed in version 13)

2.27 May a friend function be de�ned in a template friend declaration? (closed in version

13)

2.28 Clari�cation of specialization rules for nested classes. (closed in version 15)

2.29 Can a non-autonomous nested class be specialized? (closed in version 15)

2.30 Can nested classes and member template classes be specialized? (closed in version

15)

Function Templates

3.1 Can function templates have default function parameters? (closed in version 4)

3.2 Can the parameters with default arguments involve template parameters in their

types? (closed in version 5)

3.3 Can a local type be used as a type argument of a template function? (closed in

version 4)

3.4 Can any conversions be done when matching arguments to function templates?

(closed in version 5)

3.5 The WP requires that every template parameter be used in an argument type of

a function template. What constitutes a \use" of a template parameter in an

argument type? (closed in version 4)

3.6 Can unnamed types be used as template arguments? (closed in version 4)

3.7 Can template parameters be used in quali�ed names in function template declara-

tions? (closed in version 12)

3.8 Can a noninline function template be instantiated when referenced? (closed in

version 4)

3.9 A proposal to allow conversions in function template calls. (closed in version 6)

3.10 What happens when the explicit speci�cation of function template arguments results

in an invalid type? (closed in version 6)

3.11 How do default arguments work when using new explicit specialization declarations?

(closed in version 6)

3.12 How do old style specialization declarations interact with new style ones? (closed

in version 6)

3.13 Revisiting default arguments. (closed in version 12)

3.14 What are the rules regarding use of the inline keyword in function template decla-

rations? (closed in version 10)



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 6

3.15 How may elaborated type speci�ers be used in function template declarations?

(closed in version 8)

3.16 Clari�cation of template parameter deduction rules. (closed in version 8)

3.17 How may an overloaded function name be used as a function template argument in

a context that requires parameter deduction? (closed in version 8)

3.18 Must a function template declaration be visible when an instance of the template is

called? (closed in version 8) item[3.19] What are the rules regarding the deduction

of template template parameters? (closed in version 8)

3.20 How are type/expression ambiguities resolved in explicitly quali�ed function tem-

plate calls? (closed in version 10)

3.21 May template functions with the same signature coexist with one another? May a

template function with a given signature coexist with a nontemplate function with

the same signature. (closed in version 12)

3.22 Proposed rules for selecting between overloaded function templates (closed in ver-

sion 12)

3.23 Binding of function and array types to template dependent reference parameters.

(closed in version 15)

3.24 Clari�cation regarding nontype parameters deduced from array bounds. (closed in

version 13)

3.25 Can a type parameter be deduced from the type of a nontype parameter? (closed

in version 13)

3.26 What is the type of a constant deduced from an array bound? (closed in version

13)

3.27 Clari�cation of rules regarding expressions used as nontype arguments. (closed in

version 13)

3.28 Elaborated type speci�ers in function template declarations revisited. (closed in

version 15)

3.29 Template argument deduction revisited. (closed in version 15)

3.30 How are nondeduced nested class references handled in function template declara-

tions?

Member Function Templates

4.1 Are inline member functions that are not used by a given class template instance

instantiated? (closed in version 4)

4.2 Can a noninline member function or a static data member be instantiated when

referenced? (closed in version 4)



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 7

4.3 Must the template parameter names in a member function de�nition match the

names used in the class de�nition? (closed in version 4)

4.4 What are the rules regarding use of the inline keyword in member function decla-

rations? (closed in version 6)

4.5 How are default arguments for parameters of member functions of class templates

handled? (closed in version 4)

4.6 Can a class template member function be redeclared outside of the class? (closed

in version 6)

4.7 Can a member function of a class specialization be instantiated from a member

function of the class template? (closed in version 8)

4.8 Can a template member function be declared in a specialization declaration? (closed

in version 8)

4.9 Can a member function de�ned in a class template de�nition be specialized? (closed

in version 8)

4.10 How are members of class templates declared and de�ned? (closed in version 13)

4.11 How are members functions of a partial specialization of a class template de�ned?

(closed in version 13)

Explicit Specialization Issues

5.1 Can you create a speci�c de�nition of a class template for which only a declaration

has been seen? (closed in version 4)

5.2 Can you declare an incompletely de�ned object type that is a speci�c de�nition of

a class template? (closed in version 4)

5.3 Can the class template name be used as a synonym for the current speci�c de�nition

inside the speci�c de�nition? (closed in version 4)

5.4 Can a speci�c de�nition of a class template be a local class? (closed in version 4)

5.5 Where can an explicit specialization be declared?

5.6 Clari�cation of rules regarding the explicit specialization of class templates.

5.7 How are the members of an explicitly specialized class de�ned?

5.8 What syntax is used to declare a template entity to be a friend?

5.9 What are the rules for exception speci�cations on explicit specializations?

5.10 What is the linkage (internal vs. external) of an explicit specialization?



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 8

Other Issues

6.1 Should classes used as template arguments have external linkage? (closed in version

4)

6.2 When must errors in template de�nitions be issued and when must they not be

issued? (closed in version 4)

6.3 What kinds of types may be used in a function template declaration while still being

able to deduce the template argument types? (closed in version 4)

6.4 Can a static data member of a class template be declared with an incomplete array

type? (closed in version 4)

6.5 How should template arguments that contain \>" be parsed? (closed in version 4)

6.6 Can template versions of operator new and operator delete be declared? (closed

in version 4)

6.7 How can a name that is unde�ned at the point of its use in a template declaration

be determined to be a type or nontype? (closed in version 4)

6.8 May template declarations be given a linkage speci�cation other than C++. (closed

in version 6)

6.9 Should there be a translation limit that speci�es a minimum depth of recursive

instantiation that must be supported? (closed in version 6)

6.10 Can a single template declaration declare more than one thing? (closed in version

6)

6.11 Can a storage class be speci�ed in a template parameter declaration? (closed in

version 6)

6.12 Can an incomplete type be used as a template argument? (closed in version 6)

6.13 Can a template nontype parameter have a void type? (closed in version 6)

6.14 Can a nontype parameter be a 
oating point type? (closed in version 6)

6.15 What kind of expressions may be used as nontype template arguments?

6.16 Can a template parameter be used in an explicit destructor call? (closed in version

6)

6.17 Can pointer to member types be used as nontype parameters? (closed in version 8)

6.18 Issues regarding declarations of specializations. (closed in version 12)

6.19 Clari�cation of explicit designation of a name as a type. (closed in version 8)

6.20 Template compilation model proposal. (withdrawn - last in version 7)

6.21 How is a dependent name known to be a template? (closed in version 12)



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 9

6.22 Interaction of templates and namespaces. (closed in version 10)

6.23 Floating point template parameters revisited. (closed in version 10)

6.24 May function types be used as template parameters? (closed in version 12)

6.25 WP clari�cation: overloaded functions as template arguments (closed in version 10)

6.26 WP clari�cation: access checking an template arguments (closed in version 10)

6.27 Name binding problems (closed in version 12)

6.28 Can a user-specialization be provided for an operator -> that cannot be instanti-

ated? (closed in version 13)

6.29 How are names from template dependent base classes to be used? (withdrawn, last

in version 12)

6.30 When is a template argument list required in a function declaration? (closed in

version 15)

6.31 Is a template argument list permitted in a function template declaration? (closed

in version 15)

6.32 Can compiler-generated functions be explicitly specialized or instantiated? (closed

in version 15)

6.33 When is a nested-name-speci�er allowed in the declarator in an explicit instantia-

tion. (closed in version 15)

6.34 Can an explicit instantiation that refers to a class be used to instantiate all the

members of a nested class? (closed in version 15)

6.35 typename syntax problems. (closed in version 15)

6.36 Where is typename permitted? (closed in version 15)

6.37 Does typename a�ect name lookup? (closed in version 15)

6.38 Clari�cation of interaction of namespaces and specialization (closed in version 15)

6.39 Correction of default template argument description. (closed in version 15)

6.40 Clari�cation of access checkin in explicit instantiation directives. (closed in version

15)

6.41 Linkage consistency rules for specialization and guiding declarations. (closed in

version 15)

6.42 Clari�cation of rules for template operator new and delete.

6.43 Clari�cation of rules for the number of things declared in a template declaration.

6.44 What are the rules for exception speci�cations on explicit instantiations?



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 10

6.45 A proposal to eliminate guiding declarations.

6.46 What are the rules used to determine whether expressions involving nontype tem-

plate parameters are equivalent?

6.47 When are friend functions de�ned in class templates evaluated?

6.48 Are template friend declarations permitted in local classes?

Erwin Unruh's Issues

7.1 Type deduction for conversion operators (closed in version 12)

7.2 How does type deduction interact with overloading (closed in version 13)

7.3 How does type deduction interact with conversions (removed in version 15)

7.4 What is the point of instantiation really? (closed in version 15)

7.5 Short addition to 3.17 (closed in version 13)

7.6 Type deduction with several results (closed in version 13)

Member Template Issues

8.1 Can normal members coexist with member function templates that could generate

the same signature?

8.2 Clari�cation of rules for member templates and virtual functions.

8.3 Can a member function template be used as a copy constructor or copy assignment

operator?

8.4 Can two member templates coexist whose only di�erence is that one is static and

the other is not? How are template conversion functions explicitly called, explicitly

specialized, and explicitly instantiated.

8.6 Can a template argument list be supplied to an constructor template or conversion

template?

8.7 How is a conversion function chosen when the set of conversions includes conversion

templates functions?

8.8 Clari�cation of rules for standard conversions following template conversion func-

tions

8.9 Can a member class template be declared and then de�ned later within the class?

Nontype Parameters for Function Templates

A proposal for nontype parameters for function templates as required by the Bitset class.

(closed in version 4)



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 11

Class Template References

2.28 Clari�cation of specialization rules for nested classes.

Status: Approved in Santa Cruz.

The current wording in 7.1.5.3 [dcl.type.elab] does not permit an elaborated type speci�er

containing a quali�ed name to be the sole constituent of a declaration. Unless this is

changed, it will not be possible to name a nested class member of a template class in an

explicit instantiation.

template <class T> struct A {

struct B {};

};

template <> struct A<int>; // okay

template <> struct A<char>::B; // not allowed by 7.1.5.3

Answer: 7.1.5.3 should be changed to permit this usage in explicit instantiations and

explicit specializations.

Version added: 14

Version updated: 14

2.29 Question: Can a non-autonomous nested class be specialized?

Status: Approved in Santa Cruz

It is possible for the de�nition of a nested class to also be used to declare members of

that class type. While it would still be possible to permit classes de�ned in such \non-

autonomous" declarations to be specialized, it seems like a bad idea. Moreover, most such

uses would require the nested class to be instantiated as part of the instantiation of the

enclosing class anyway.

Answer: Yes, non-autonomous classes can be specialized (provided their use within the

class does not force their instantiation, but this is a consequence of the normal rules that

require a specialization to be declared before its �rst use).

template <class T> struct A {

struct B {int i;} b; // instantiated as part of A<T>

union { int i; float f; }; // instantiated as part of A<T>

struct C { long l; }; // not instantiated as part of A<T>

// so can be specialized

struct D {int i;} *d; // not instantiated as part of A<T>

// so can be specialized

};

Version added: 14

Version updated: 15

2.30 Question: Can nested classes and member template classes be specialized?

Status: Approved in Santa Cruz

In Austin, we disallowed specialization of member classes and member template classes.

This was done because the rules that were then in e�ect concerning when nested classes



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 12

were instantiated made such specializations impossible. In Monterey, we changed the rules

making such specializations once again possible.

Answer: For consistency with other kinds of members, it is proposed that the ability to

specialize member classes and member class templates be restored.

Version added: 14

Version updated: 14

Function Templates

3.23 Binding of function and array types to template dependent reference parameters.

Status: Rejected in Santa Cruz

WP 14.10.2 [temp.deduct] says that array and function types do not decay when binding

to a parameter that is a reference. The problem with this is it permits array types to be

used in places where the template writer had not intended them to be used. For example,

the HP STL distribution includes a max template that is de�ned as:

template <class T>

inline const T& max(const T& a, const T& b) {

return a < b ? b : a;

}

This works well for most types, but fails for array types such as string literals.

int main()

{

char* x;

x = max("hello", "there"); // T is char[6]

x = max("hi", "there"); // fails because T is char[3]

// and char[6]

}

What is intended is that the resulting function parameter type for const T& is const

char*&. What happens with the current WP wording is that the resulting function pa-

rameter is const char (&)[6]. This causes a problem: the length of the two strings

must be identical for type deduction to succeed, and the return type will end up being a

reference to array of the same size.

Answer: The proposed solution is to revise the deduction rules to say that an array or

function type can only bind to a parameter that is declared with a reference to array or

function type, as in the example that appears below.

More speci�cally, assuming P is the parameter type and A is the argument type: If P is a

reference to an array type and A is an array type, or P is a reference to function type and

A is a function type, and if the values of the all of the template parameters referenced by P

can be deduced from A, then the original type of A is used for type deduction. Otherwise,

� if A is an array type, the result of the array to pointer decay is used in place of A for

type deduction; otherwise,



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 13

� if A is a function type, the result of the function to pointer decay is used in place of

A for type deduction.

template <class T, int I1, int I2>

T* f(T (&t1)[I1], T (&t2)[I2]);

int main()

{

char* x;

x = f("hello", "there");

}

This still permits binding of array types, but only in cases where that is explicitly indicated

by the template writer.

Note that this illustrates another clari�cation that needs to be made. Major array bounds

are part of the parameter type when the parameter is a reference. Consequently, nontype

template parameters may be deduced from a major array bound in such cases.

Version added: 12

Version updated: 12

3.28 Elaborated type speci�ers in function template declarations revisited.

Status: Approved in Santa Cruz

In Waterloo, we decided that an elaborated type speci�er containing a template parameter

name could not be used in a function template declaration.

Now that we have the partial ordering rules for function templates, this issue should be

checked to see if it is still what we want.

With the partial ordering rules, we can now select one template over another based on

one being \more specialized" than another. It seems that these rules could be applied to

elaborated type speci�ers as well.

If this is permitted in the partial ordering of function templates, it should also be permitted

in the partial ordering used for class template partial specializations.

template <class T> class List {};

template <class T> void f(List<struct T> l){} // #1

template <class T> void f(List<union T> l){} // #2

template <class T> void f(List<enum T> l){} // #3

template <class T> void f(List<T> l){} // #3

union U {};

struct S {};

class C {};

enum E {};

int main()

{

List<U> u;



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 14

List<S> s;

List<C> c;

List<E> e;

List<int> i;

f(u); // calls #2

f(s); // calls #1

f(c); // calls #1

f(e); // calls #3

f(i); // calls #4

}

Answer: Core-3 decided that the current rule banning use of template parameters in

elaborated type speci�ers only in function template declarations was not su�cient (because

of things like partial specializations of classes), and that a simple prohibition against the

use of template parameters in elaborated type speci�ers was more desirable than a more

complicated rule.

Consequently, template parameters cannot be used in elaborated type speci�ers.

Version added: 14

Version updated: 15

3.29 Template argument deduction revisited.

Status: Part 1 approved in Santa Cruz, parts 2 and 3 rejected in Santa Cruz.

In Tokyo a number of template argument deduction cases were discussed. As a result, I

was asked to reopen the issue of template argument deduction so that the following cases

could be be reexamined:

template <template <class T1> struct X, class T2> void f(X<T2>); // #1

template <class T> void f(A<T>::B); // #2

template <class T> void f(T::B); // #3

1. It was pointed out that it is not currently possible to deduce a template template

parameter from an actual argument whose type is a template instance, that this kind

of deduction can readily be done, and that doing so provides signi�cant functionality.

For example, it permits writing of a function that operates on any of a number of

di�erent containers. For example,

template <class T struct List {};

template <class T struct Vector {};

template <template <class T1> struct Container, class Type>

void print(Container<Type>);

2. The second case is whether a template argument can be deduced from the parent

class of a nested class or nested enumeration. This case is important to maintain the

general rule that a nontemplate class can be converted to a template class. Without

this deduction, nested classes within templates are severely limited. Furthermore,



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 15

without this rule member template classes are even more limited. The following

example illustrates the kind of usage that is common for normal nested classes that

cannot currently be done with nested classes and member templates of class templates.

template <class T> struct A {

class B {};

template <class T> class C {};

};

template <class T> A<T>::B operator+(A<T>::B, A<T>::B);

template <class T1> template <class T2>

A<T1>::B<T2> operator+(A<T1>::B<T2>, A<T2>::B<T2>);

A member typedef is just a synonym for another type and so, of course, there is no

way that the class containing the typedef can be deduced from an actual argument

whose type was speci�ed using the typedef.

3. The third case is a generalization of the second. This has been separated out because

it was pointed out that some of the original objections to this issue when it was

previously raised were primarily based on this more general form, which actually

provides very little additional functionality over the more restricted version in #2.

Version added: 14

Version updated: 15

3.30 Question: How are nondeduced nested class references handled in function template dec-

larations?

Status: Open

Core-3 has con�rmed that a template parameter cannot be deduced from contexts such as

the ones shown in the following example:

template <class T> void f(T::X);

template <class T> void f(A<T>::X);

But what about the usage like this:

template <class T> void f(T, T::X);

template <class T> void f(T, A<T>::X);

We know that T cannot be deduced from the second parameter of each function, but can

the second parameter use the T deduced elsewhere in the parameter list? The alternatives

are to make such usage ill-formed, or to specify that when a template parameter is used in

a context in which its value cannot be deduced, the values deduced from elsewhere in the

declaration are used. Relying on the values deduced elsewhere is consistent with the current

handling of template parameters in function return types and exception speci�cations.

Angelika Langer, of Rogue Wave has a proposal in the pre-Stockholm mailing to sim-

plify the interface of some of the STL routines using iterator traits. Her proposal is that

interfaces of the form

template <class InputIterator, class T>

InputIterator find(InputIterator first,

InputIterator last,

const T& value);



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 16

be replaced with

template <class InputIterator>

InputIterator find(InputIterator first,

InputIterator last,

const typename iterator_traits<InputIterator>::value_type& value);

Angelika points out that the new interface is less error prone (because of the ability to

ensure that the value type matches the iterator being used), results in the generation of

fewer template instances (because of the ability to perform conversions on the arguments

associated with nondeduced parameters), and simplicity.

Answer: When a template parameter is used in a type in a context in which its value cannot

be deduced, and the value has not been explicitly speci�ed, the value deduced elsewhere

in the declaration is used. If the value cannot be deduced elsewhere and is not explicitly

speci�ed, the program is ill-formed. A function parameter containing only nondeducible

parameter types is considered a nondedicible parameter for overload resolution purposes,

meaning that the full set of conversions can be performed on arguments passed to that

parameter.

Version added: 15

Version updated: 15

Explicit Specialization Issues

5.5 Question: Where can an explicit specialization be declared?

Status: Open

namespace N {

class A {

template <class T> void f(T);

template <> void f(int){} // error -- specialization not

// allowed in class scope

};

template <> void A::f(short); // okay

template <> void A::f(short){} // okay

template <> void A::f(char); // okay

}

template <>

void N::A::f(float); // error -- specialization cannot be

// declared outside of its namespace

template <>

void N::A::f(char); // error -- specialization cannot be

// redeclared outside of its namespace

template <> void N::A::f(char){} // okay



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 17

Answer: An explicit specialization must be declared in the namespace in which the tem-

plate was declared. If the template is a member template, the specialization must be

declared in the namespace containing the enclosing class (see also issue 6.38). An explicit

specialization may be de�ned (but not redeclared) later outside of the namespace of which

it is a member.

Note: The di�erence between this and issue 6.38 is that this clari�es that an explicit

specialization is not permitted in a class scope, and that an explicit specialization cannot

be redeclared in an enclosing namespace scope.

Version added: 15

Version updated: 15

5.6 Clari�cation of rules regarding the explicit specialization of class templates.

Status: Open

The explicit specialization of a template must be declared before the �rst \use" of a

template. What constitutes the \use" of a class template?

template <class T> struct A {

template <class T2> struct B {};

};

A<char>::B<int> acbi; // Generated from template

A<int>::B<int>* aibi; // Complete instantiation not yet done

template <>

struct A<int>::B<char> {}; // Explicit specialization

// of instance of A<int>::B

A<int>::B<char> aibc; // Uses specialization declared above

template <> template <class T>

struct A<int>::B {}; // Explicit specialization of template

Answer: A class template is \used" when an instance of the class is generated from the

template. Consequently, a use of the template in such a way that does not require a full

instantiation, or the explicit specialization of an instance of the template may precede the

declaration of an explicit specialization of the template.

Version added: 15

Version updated: 15

5.7 Question: How are the members of an explicitly specialized class de�ned?

Status: Open

template <class T> struct A {

template <class T2> void f(T2);

void g(int);

};



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 18

template <class T> template <class T2> void A<T>::f(T2){}

template <class T> void A<T>::g(int){}

template <> struct A<int> {

template <class T2> void f(T2);

void g(int);

};

template <class T2> void A<int>::f(T2){}

void A<int>::g(int){}

template <> void A<int>::g(int){} // error - not something that

// can be specialized

Answer: Members of explicitly specialized classes are unrelated to the members of the

template that has been specialized (they need to have the same names, types, etc.). De�-

nitions of such members use the same syntax, and follow the same rules, as the de�nitions

of members of nontemplate classes.

Version added: 15

Version updated: 15

5.8 Question: What syntax is used to declare a template entity to be a friend?

Status: Open

A friend declaration such as friend void f(int) does two things: it declares the function

void f(int) if not previously declared, and it makes that function a friend.

Note: Removal of friend injection from templates is still under discussion, but this is a

separate issue as it involves friends in nontemplate contexts too.

template <class T> void f(T);

struct X {

friend void f(int);

friend void g(int);

};

This declares a guiding function f(int) and a normal function g(int).

But what if you want to declare the template instance f(int) to be a friend without

creating a guiding declaration? My proposed means of doing this is the following:

template <class T> void f(T); struct X friend void f<>(int); ;

The presence of a template argument list indicates that only function templates named

"f" are to be considered. The argument list could, of course, include template argument

values.

Specialization declarations would not be permitted in friend declarations, but template

friend declarations would still be permitted:

template <class T> void f(T); struct X template <> friend void f(int); // error template

<class T2> friend void f(T2); // okay ;

Actually, friend void f<>(int) is already permitted as far as I can tell, so the main

purpose of this proposal would be to make clear that template <> friend void f(int)

is not permitted.



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 19

Answer: A function or function template is made a friend using the normal declaration

syntax (i.e., not the explicit specialization syntax).

Note: This proposal would remain unchanged even if guiding declarations were eliminated.

The declarations that are now described as guiding declarations would become declarations

of unrelated functions. In order to make a template instance a friend, one would have to

use the <> syntax when naming the function to be made a friend.

Version added: 15

Version updated: 15

5.9 Question: What are the rules for exception speci�cations on explicit specializations? (see

also 6.44)

Status: Open

A specialization is intended to provide an alternate de�nition for a template but should

not a�ect the interface. Consequently, a specialization must have the same exception

speci�cation as the generated instance would. This would indicate that one of two rules

could be adopted:

1. No exception speci�cation is permitted on a specialization declaration. The exception

speci�cations are determined by the template.

2. The exception speci�cation must match the one speci�ed by the template.

My proposed resolution is that the exception speci�cation must match the one speci�ed

by the template. One minor advantage of this is that it makes it easier to construct code

that can be compiled using either the new or old specialization rules (with apologies to

those who don't like macros):

#ifdef USE_NEW_SPECIALIZATION

#define specialize template <>

#else

#define specialize /* nothing */

#endif

template <class T> void f(T) throw(T);

specialize void f(int) throw(int){}

This is also the closes approximation to the current WP rule that requires that the excep-

tion speci�cation of all declarations of a function be the same.

Answer: The exception speci�cation in an explicit specialization must match the exception

speci�cation of the template.

Version added: 15

Version updated: 15

5.10 Question: What is the linkage (internal vs. external) of an explicit specialization?

Status: Open

The WP currently says (14.10.5p3):



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 20

An explicit specialization of a function template shall be inline or static only if it is

explicitly declared to be, and independently of whether its function template is.

This may make sense for the inline keyword, but does not seem to make sense for static.

Perhaps this is a vestigial feature from before the existence of explicit specializations.

An instance of a template, whether generated or explicitly specialized, should have the

same linkage as the template itself.

Answer: The linkage (internal vs. external) of an explicit specialization is the same as the

linkage of the template with which it is associated.

Version added: 15

Version updated: 15

Other Issues

6.30 Question: When is a template argument list required in a function declaration?

Status: Approved in Santa Cruz

When the requirement that specializations be declared before use was added, a new spe-

cialization syntax was added for use in explicit specializations and explicit instantiations.

The new syntax was:

void f<>(int); // explicit specialization

template f<>(int); // explicit instantiation

In this syntax, the <> was needed to distinguish a specialization from a normal function

declaration. Recently, the explicit specialization syntax was changed to

template <> void f(int); // explicit specialization

which no longer requires the <> in the declarator.

Answer: A template argument list is permitted, but not required, in an explicit special-

ization and an explicit instantiation.

Version added: 14

Version updated: 14

6.31 Question: Is a template argument list permitted in a function template declaration?

Status: Approved in Santa Cruz

template <class T> void f(T); // normal declaration

template <class T> void f<T>(T); // is this permitted?

Answer: No.

Version added: 14

Version updated: 14

6.32 Question: Can compiler-generated functions be explicitly specialized or instantiated?

Status: Approved in Santa Cruz

Answer: No. Only user-declared functions can be explicitly specialized or instantiated.

Version added: 14

Version updated: 14



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 21

6.33 Question: When is a nested-name-speci�er allowed in the declarator in an explicit instan-

tiation.

Status: Approved in Santa Cruz

namespace N {

template <class T> class A {

void f();

};

template <class T> void f(T){}

template A<int>::f(); // okay

template N::A<int>::f(); // not allowed

template N::f(int); // not allowed

}

template N::A<int>::f(); // okay

template N::f(int); // okay

Answer: A nested-name-speci�er is allowed in the declarator in a explicit instantiation

directive for a class member or a namespace member outside of its namespace. These are

the same rules as when a nested-name-speci�er is allowed in a normal function de�nition.

Version added: 14

Version updated: 14

6.34 Question: Can an explicit instantiation that refers to a class be used to instantiate all the

members of a nested class?

Status: Approved in Santa Cruz

In the following example, it it possible to use an explicit instantiation directive to instanti-

ate all the members of A<int>::B, or must the class referred to in an explicit instantiation

refer to a \top level" template entity like A<int>?

template <class T> struct A {

class B {

void f();

};

};

template <class T> void A<T>::B::f(){}

template class A<int>::B;

Answer: Yes, an explicit instantiation directive may name a nested class within a template

class.

Version added: 14

Version updated: 14

6.35 typename syntax problems.

Status: Option 2 approved in Santa Cruz.

There are a few problems with the current typename syntax.

First, there is no way to use typename in a using-declaration.



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 22

template <class T> struct A : public T {

typename T::X x; // Declares a member "x" of type T::X

using T::X; // Introduces X as a nontype

using typename T::X; // Not permitted by the syntax

};

Second, because typename can also be used as an alternative to class in a template

parameter list, we have a new ambiguity between a template type parameter declaration

and a template nontype parameter declaration:

template <class T, typename T::X x> struct B {};

Note that the presence of the parameter name following T::X cannot be used to disam-

biguate, because unnamed parameters are permitted.

Option 1: Both of these problems can be solved, using a suggestion made by Sean Cor�eld,

that typename be changed to work the way that template does when used for disambigua-

tion. The �rst example above would then be rewritten as:

template <class T> struct A : public T {

using T::typename X;

};

The second example would no longer be ambiguous.

Option 2: If option 1 is too extreme at this point in the process, an alternate solution

would be:

� Modify the syntax to allow typename in using-declarations.

� Distinguish the two uses of typename in a template parameter list by seeing whether

the name that follows typename is quali�ed or not. When typename is used to specify

that a name is a type, it must be followed by a quali�ed name. A type parameter

declaration cannot use a quali�ed name.

Option 3: A third alternative, which eliminates the need to disambiguate template param-

eter declarations would be:

� Modify the syntax to allow typename in using-declarations (same as option 2).

� Disallow typename as a synonym for class in a template parameter declaration.

Version added: 14

Version updated: 14

6.36 Question: Where is typename permitted?

Status: Approved in Santa Cruz

The WP places constraints on where the typename speci�er can be used, as shown in the

following text from the WP:

14.2 Name Resolution

...

2 In a template, any use of a quali�ed-name where the quali�er depends on a template-

parameter can be pre�xed by the keyword typename to indicate that the quali�ed-name

denotes a type.

3 ... The quali�ed-name shall include a quali�er containing a template parameter or

a template class name.



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 23

The di�erence in wording between the two paragraph leads to questions such as whether

the quali�er must truly depend on a template parameter or whether any template class

name (including ones that refer to user specializations) is permitted.

I think the wording should be relaxed to allow typename to be used before any quali�ed

name. To illustrate why, consider the following example:

template <class T> struct A {

struct B {};

};

struct AA {

struct B {};

};

template <class T> struct C {

typedef A<T> my_a;

typename my_a::B b;

};

This is already questionable, because it is not clear whether my_a meets the requirement of

paragraph #2 that the quali�er depend on the template parameter. Likewise, paragraph

#3 requires that the quali�ed-name contain a template parameter or template class name.

At the very least, these paragraphs would need to be changed to refer to the type speci�ed

by the quali�er and not the quali�er itself.

But what if class C is changed to the following?

template <class T> struct C {

typedef AA my_a;

typename my_a::B b;

};

It should be possible to write code using the typedef my_a without knowing whether or

not it refers to a template parameter dependent class. You would, of course, need to use

typename if my_a might refer to a template dependent class. But requiring it only when

my_a refers to a template dependent class seems unnecessary.

I'm assuming that typename would still only be permitted in template contexts. This could

be relaxed further by permitting typename to be used anywhere (i.e, even in nontemplate

classes and functions).

Answer: typename may be used before any quali�ed name within the scope of a template

declaration.

Version added: 14

Version updated: 14

6.37 Question: Does typename a�ect name lookup?

Status: Approved in Santa Cruz

I ran into some code that used typename that expected it to restrict the lookup to only

include types. That is, in the following example, they expect the lookup of T::X to �nd

the struct and not the int.



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 24

struct A {

struct X {};

int X;

};

template <class T> class B {

typename T::X ta1; // allowed?

};

B<A> b;

Answer: No. typename is used to permit syntax analysis of template de�nitions, and acts

as an assertion that during an actual instantiation the named entity must be a type. It

does not a�ect the way that names are looked up, however.

Version added: 14

Version updated: 14

6.38 Question: Clari�cation of interaction of namespaces and specialization

Status: Approved in Santa Cruz

If a template is declared in a namespace, but its specializations also be declared in the

namespace before being de�ned outside of the namespace? What about guiding declara-

tions?

namespace N {

template <class T> void f(T);

template <> void f(char);

}

template <> void N::f(char); // error - redeclaration outside

// of namespace

template <> void N::f(char){} // okay

template <> void N::f(int); // error - must be declared in namespace

void N::f(char); // error - must be declared in namespace

Answer: A specialization must be declared in the namespace of which it is a member.

Once so declared, it may be de�ned either in the namespace in which the template is

declared, or in an enclosing namespace (i.e., wherever a de�nition of a template declared

in a namespace is allowed).

A guiding declaration may only appear within the namespace in which the template is

declared, because it actually adds a declaration to the namespace.

Version added: 14

Version updated: 15

6.39 Correction of default template argument description.

Status: Approved in Santa Cruz

The WP currently says (14.7 [temp.param]): The set of default template-arguments shall

be provided by the �rst declaration of the template in that unit.



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 25

This is incorrect. It appears that a previous issue from this list was incorporated into the

WP incorrectly.

The correct rules are (from issues 1.1 and 1.2 of this paper):

1. Default template arguments are permitted on class template declarations and de�ni-

tion.

2. The defaults need not be speci�ed on the initial declaration.

3. After merging the default arguments from multiple declarations, the last parameter

with a default argument may not be followed by a parameter without a default.

4. Default template arguments are not allowed on function template declarations, or

declarations of members of class templates.

The rule about providing defaults on the initial declaration of a template actually applies

to function parameter default arguments not template parameter default arguments. The

rule, from issue 3.13 is: Default function arguments may only be speci�ed in the initial

declaration of a template function. This means that default arguments for member func-

tions of class templates must be speci�ed in the class de�nition and not on de�nition of

members that appear outside of the class de�nition.

Answer: Core-3 decided to adopt the simpler rule that was inadvertently incorporated into

the working paper. Consequently, the set of default template-arguments shall be provided

by the �rst declaration of the template in that unit and default template arguments are not

allowed on function template declarations or declarations of members of class templates.

Version added: 14

Version updated: 15

6.40 Clari�cation of access checking in explicit instantiation directives.

This issue and its resolution are from Bill Gibbons' re
ector posting c++std-ext-3258.

Status: Approved in Santa Cruz

Bill Gibbons raised the issue that it is not possible to explicitly instantiate templates

where the template arguments or other components of the explicit instantiation directive

reference types that are not accessible.

namespace N {

template <class T> void f(T);

}

namespace M {

class A {

class B {};

void f() {

B b;

N::f(b);

}

};

}

template void N::f(M::A::B); // should be allowed



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 26

Answer: The following is the wording suggested by Bill Gibbons to correct this problem,

to be added at the end of 14.4 [temp.explicit]. I have modi�ed Bill's suggested wording

somewhat. My additions are shown in italics.

The usual access checking rules do not apply to explicit instantiations. In particular,

the template arguments, and names used in the function declarator (e.g., including

parameter types, return types, and exception speci�cations) may be private types or

objects which would normally not be accessible and the template may be a member

template or member function which would not normally be accessible.

Version added: 14

Version updated: 14

6.41 Linkage consistency rules for specialization and guiding declarations.

Status: Approved in Santa Cruz

Answer: Core-3 decided that a specialization or guiding declaration may have di�erent

linkage than the template with which it is associated, but cannot have C linkage. As with

all other cases, linkage other than C and C++ is implementation de�ned.

template <class T> void f(T);

extern "C" {

template <> void f(int); // not allowed

}

extern "C" void f(double); // not allowed

Version added: 14

Version updated: 14

6.42 Clari�cation of rules for template operator new and delete.

Status: Open

In issue 6.6 (from version 4) it was decided that only the multiple parameter version of

operator new could be a template. Since then we have added placement operator delete

and member templates.

example

Answer: Only the multiple parameter operator new and operator delete routines may be

declared as templates. In operator new templates the �rst parameter must be of type

size_t, and the return type must be void*. In operator delete templates the �rst param-

eter must be void* and the return type must be void.

Version added: 15

Version updated: 15

6.43 Clari�cation of rules for the number of things declared in a template declaration.

Status: Open

Issue 6.10 (from version 6) speci�ed that a template declaration could not declare more

than one thing. The purpose of this issue is to indicate that this also applies to explicit

specializations and instantiations.



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 27

template <class T> void f(T), g(T); // Error (from 6.10)

template <class T> struct A {};

template <class T> T f(T);

template <> class A<char>; // okay

template <> void f(int), f(char); // Error

template void f(int*), f(char*); // Error

template <>

class A<int> f(class A<int>); // okay -- unneeded use of

// elaborated type specifier

template <> class A<int> *p; // error -- "p" is not something that can

// be specialized

Answer: In a template declaration, explicit specialization, or explicit instantiation, at

most one declarator may be present. When such declarations are used to declare a class,

no declarator is permitted. In other words, the only forms permitted to declare a class are:

\class class-name;" and \class class-name {};".

Version added: 15

Version updated: 15

6.44 Question: What are the rules for exception speci�cations on explicit instantiations? (see

also 5.9)

Status: Open

An explicit instantiation is more like a reference than a declaration, so it seems undesirable

to permit or require exception speci�cations to be provided.

Furthermore, it is desirable to ensure that explicit instantiation directives can be easily

created by tools from information such as a list of unde�ned symbols produced by the

linker.

template <class T> void f(T) throw() {}

template <> void f(int); // okay

template <> void f(int) throw(); // error

Answer: Exception speci�cations are not permitted on explicit instantiation directives.

Version added: 15

Version updated: 15

6.45 A proposal to eliminate guiding declarations.

Status: Open

There is an existing problem with guiding declarations. The problem has been discussed

frequently on the re
ector.



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 28

The problem is that any \normal" function that has a type that happens to map onto an

instance of a function template is considered a guiding declaration. The rules for guiding

declarations state that a de�nition cannot be provided for such a function. So, if you

accidentally happen to declare such a function, you are out of luck.

template <class T> T max(T,T);

int max(int,int); // guiding declaration

Some historical information about how this situation came about might be helpful. Under

the ARM description of templates, the following program is well formed:

�le1.c:

template <class T> void f(T){}

int main()

{

f(1);

}

�le2.c:

void f(int){}

The call of f(1) in �le1.c would call f(int) de�ned in �le2.c.

This made it di�cult to support certain kinds of instantiation mechanisms, so the com-

mittee added the requirement that a specialization be declared before it is used in a given

translation unit. The committee also added a new syntax for declaring and de�ning spe-

cializations.

With this change, he call of f(1) in �le1.c would call f(int) generated from the template.

The de�nition of f(int) in �le2.c is now ill-formed. It is only ill-formed if f(int) is

instantiated or explicitly specialized somewhere in the program.

If we modify this example to add a third �le which calls f(int) in �le2.c, we end up with

the following:

�le1.c:

template <class T> void f(T){}

void f(int);

int main()

{

f('c');

}

�le2.c:

void f(iint){}

�le3.c:

void f(int);

void g()

{

f(1);

}



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 29

This program is well-formed, but

� there is no way to call f(int) in �le2.c from �le1.c. Any attempt to do so would

result in a call of f(int) generated from the template and would render the program

ill-formed.

� Any call of a the template-based f(int) in �le1.c or anywhere else in the program

would render the program ill-formed.

As bad as this is for normal functions, it is much worse for operator functions. Consider

the impact of adding a declaration such as

template <class T> T operator+(T,T);

This changes any existing declarations of operator+ functions into guiding declarations,

so a class that says

friend X operator+(X,X);

has now declared a guiding function. The function must have been de�ned somewhere else,

so that program is now ill-formed.

Now, with member templates, we have to decide whether to

1. extend this feature to include member templates

2. have member templates and nonmembers work di�erently

3. change how guiding functions work for nonmembers

Issues 8.1, 8.2, and 8.3 provide some reasons why we should not have guiding declarations

for member templates.

So, I would like to propose we do #3. Speci�cally, I would like to propose that we get

rid of guiding functions altogether, and simply state that it is permitted to have normal

functions with the same type as a potential (or actual) template instance. If you want to

have a guiding function, you can simply write a normal function that calls the template.

For example:

inline int max(int i1, int i2) { return max<>(i1,i2); }

This has the additional bene�t that it lets you write a general template, but still lets you

use speci�c functions written in C or assembler for speci�c versions. For example, the

following would be permitted:

template <class T> T sqrt(T){ /* ... */ }

extern "C" double sqrt(double);

Answer: A normal function can have the same type as a potential or actual template

instance. Such a function has no relationship to the template.

Version added: 15

Version updated: 15



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 30

6.46 Question: What are the rules used to determine whether expressions involving nontype

template parameters are equivalent?

Status: Open

A template may be declared in one (or more) translation unit(s) and de�ned in still another.

Because such declarations may involve expressions containing nontype parameters, rules

are needed to determine when one such declaration in one translation unit is considered

to match another declaration in a di�erent translation unit.

Nontype template parameters cannot be deduced from function parameters in which they

are used in expressions, but they can be used in nondeduced contexts (such as return

types) and when explicitly speci�ed.

�le1.c:

template <int I> struct A {};

template <int I, int J> A<I+J> operator +(A<I>, A<J>);

template <int I, int J, class T>

void f(A<I>, A<I*2>, A<(I + J + sizeof(T));

int main()

{

A<1> a1; A<2> a2; A<3> a3; A<7> a7;

a3 = a1 + a2;

f<1,2,int>(a1, a2, a7);

}

�le2.c:

template <int I> struct A {};

template <int I, int J> A<J+I> operator +(A<I>, A<J>); // error

template <int I, int J, class T>

void f(A<I>, A<I*2>, A<(sizeof(T) + (I + J)); // error

Answer: Expressions involving nontype template parameters are compared using an ODR-

like rule (can the ODR wording be extended to cover this case?). That is, the tokens that

make up the expression must be identical, and the names of entities, except for the template

parameters of the template declaration, must refer to the same entities in each translation

unit. If two templates are intended to declare the same entity, but violate this rule, the

results are unde�ned.

Version added: 15

Version updated: 15

6.47 Question: When are friend functions de�ned in class templates evaluated?

Status: Open

Member functions of class templates are only instantiated if they are used. This permits

the user to supply a template body that would be ill-formed if instantiated for a particular

template argument, but well formed for other template arguments.

Friend functions de�ned within a class template do not receive this special treatment. For

example, A<void*>::f would be invalid if instantiated. But because it is not used, it is



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 31

not instantiated. f(A<void*>) causes the program to be ill-formed even though it is not

used.

Of the compilers I tried this on (EDG, Sun, cfront, g++, Borland, Watcom, Microsoft),

Sun did not evaluate f(A<void*), all the others did evaluate it and issue an error (except

that one of the compilers gave an internal error).

template <class T> struct A {

T t;

int f() { return t * 2; }

friend int g(A<T> at) { return at.t * 2; }

};

int main()

{

A<int> ai;

A<void*> av;

ai.f();

g(ai);

}

Answer:

Options:

1. Status quo: friend functions are always evaluated during the instantiation of a class

template.

2. Friend functions de�ned within a class template are only evaluated if the function is

used.

Version added: 15

Version updated: 15

6.48 Question: Are template friend declarations permitted in local classes?

Status: Open

Answer: No. They are pointless, so there is no reason to permit them. No other template

declarations are permitted in local classes, it would be a simpli�cation to ban all template

declarations (i.e., including friend templates) from local classes.

Version added: 15

Version updated: 15

Erwin Unruh's Issues

Many thanks to Erwin Unruh who provided the following issues in �nished Latex form! These

issues were added to this document in version 10.



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 32

7.4 What is the point of instantiation really? (ext-2547, Erwin Unruh)

Status: Approved in Tokyo

Answer: The point of instantiation is the point of use, except that local scopes are not

considered for name lookup and name injection.

Discussion: The present rules for the template name binding have a uncomfortable bit.

Consider the following example:

template<class T> void f(T t)

{

g(t);

}

void h()

{

extern void g(char);

f('a'); // error

}

// \#1

void g(int i)

{

f(i); // error ??

}

With the present rules both instantiations fail. The �rst f<char> should fail, since no g is

in (global) scope at the point of instantiation and the local one is ignored (with very good

reason).

The second however is not so clear cut. The WP says the point of instantiation is #1 and

there is no g in scope. On the other hand one could argue that the function g is known at

the call as it is not local.

This topic is currently (Nov. 1994) still under discussion and should be reviewed in a later

version. It also interacts with the problem of name injection.

Version added: 10

Version updated: 10

Member Template Issues

8.1 Question: Can normal members coexist with member function templates that could gen-

erate the same signature?

Status: Open

Issues 8.2 and 8.3 illustrate cases in which it is desirable (or possibly necessary, depending

on the resolution of those issues) to be able to have such coexistence. If a potential instance

is allowed to coexist with a normal member function, can an actual instance do so?



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 33

template <class T> struct A {

void f(int);

template <class T2> void f(T);

};

template <> void A<int>::f(int) {} // nontemplate member

template <> void A<int>::f<>(int) {} // template member

Answer: Yes, a normal member can coexist with a member function template that could

generate the same signature. It may also coexist with an actual instance of that template.

The template can still be used by supplying the <> used to provide an explicit template

argument list to the template. If the <> is not provided, the nontemplate member is used.

This implies that there is no such thing as a member guiding declaration.

Version added: 15

Version updated: 15

8.2 Clari�cation of rules for member templates and virtual functions.

Status: Open

The WP says that a member function template cannot be virtual. But can it override a

virtual function from a base class?

Answer: A member template does not override a virtual function from a base class. The

template is can be used to generate a function whose type matches the virtual function

from the base class, but it is not virtual, and does not override the virtual function from

the base class. An overriding function with a type that matches an instance of the template

can be written in the derived class (and that function can explicitly call the template, if

that is what is desired).

class B {

virtual void f(int);

};

class D : public B {

template <class T> void f(T); // does not override B::f(int)

void f(int i) { f<>(i); } // overriding function

// that calls template

};

Version added: 15

Version updated: 15

8.3 Question: Can a member function template be used as a copy constructor or copy assign-

ment operator?

Status: Open

struct A {

A();

template <class T> A(const T&);

template <class T> operator =(const T&);



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 34

};

int main()

{

A a1;

A a2(a1); // Implicitly generated copy or template?

a1 = a2; // Implicitly generated assignment or template?

}

Answer: No, a member function template cannot be used as a copy constructor or copy

assignment operator. The copy constructor and copy assignment are special operations,

and the existence of a template that could potentially generate such a function should

not be taken to mean that the user wants the template version to be used in place of the

implicitly generated function.

If the user wants the template to be used, an explicitly written function that calls the

template version must be written.

If we were to decide that the templates could be used for this purpose, there would be no

way for a user to request that the implicitly generated function should be used in place of

the template.

Version added: 15

Version updated: 15

8.4 Question: Can two member templates coexist whose only di�erence is that one is static

and the other is not?

Status: Open

For nontemplate members, a static function with a given signature is not permitted to

coexist with a nonstatic function with the same signature (ignoring the quali�ers on the

implicit this parameter).

On the other hand, ambiguities between templates are, in general, deferred until use instead

of being diagnosed on the declaration. Furthermore, if we wanted to apply the \existing

rule" to templates, it would have to be modi�ed to permit the declaration of g while

disallowing the declaration of f.

struct A {

template <class T2> void f(T2);

template <class T2> static void f(T2);

template <class T2> void g(T2);

template <class T2, class T3> static void g(T2);

};

int main()

{

void (*fp)(int) = &A::f; // static function

void (A::* mfp)(int) = &A::f; // nonstatic function

}

template <> void A::f(int); // Ambiguous



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 35

Answer: Memebr template functions that only di�er because one is static and the other is

nonstatic may coexist, even though many uses of such functions will result in an ambiguity.

Version added: 15

Version updated: 15

8.5 Question: How are template conversion functions explicitly called, explicitly specialized,

and explicitly instantiated.

Status: Open

struct A {

template <class T> operator T*();

};

template <class T> A::operator T*(){ return 0; }

template <> A::operator char*(){ return 0; } // specialization

template A::operator void*(); // instantiation

int main()

{

A a;

int* ip;

char* cp;

void* vp;

ip = a.operator int*(); // explicit call

cp = a;

vp = a;

}

Answer: Template conversions functions are explicitly called, explicitly specialized, and

explicitly instantiated by supplying the actual destination type as is done with nontemplate

conversions.

Version added: 15

Version updated: 15

8.6 Question: Can an explicit template argument list be supplied to an constructor template

or conversion template?

Status: Open

Constructors and conversion operators do not have names. Given that they have no names,

it follows that an explicit template argument list cannot be supplied because there is no

name to which to attach the argument list.

It might be possible to come up with some set of rules that would permit such usage, but

unless there is a compelling need for this functionality, I would recommend that we simply

say that template argument lists cannot be supplied for unnamed entities.

template <class T> struct X {};



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 36

template <class T> struct A {

template <class U, class T> operator T*();

template <class U, class T> A(T*);

};

int main()

{

A<int> ai;

int* ip;

X* xp;

ip = ai.operator int<char>();

ip = ai.operator X<char>(); // ??

A<int> a2(1); // can a template arg list go somewhere?

}

Answer: Template argument lists cannot be supplied for unnamed entities. This means

that explicit template argument lists cannot be supplied for constructor templates and

conversion templates.

Version added: 15

Version updated: 15

8.7 Question: How is a conversion function chosen when the set of conversions includes con-

version templates functions?

Status: Open

The current overload resolution rules seem to adequately address the selection of a con-

version function when conversion templates are included. The only piece missing is a

description of what happens when more than one conversion template can produce the

required type.

template <class T> struct X{};

struct A {

template <class T> operator T*();

};

struct B : public A {

template <class T> operator T();

template <class T> operator X<T>();

};

int main()

{

B b;

X<int> xi = b; // B::operator X<T>



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 37

int* ip = b; // A::operator T*

}

Answer: If more than one conversion template can produce the required type, the partial

ordering rules are used to select the \most specialized" version of the template that can

produce the required type.

Note that, as with other conversion functions, the type of the implicit this parameter is

not considered (i.e., members of base classes are considered equally with members of the

derived class, except that a derived class conversion function hides a base class conversion

function that converts to the same type).

Version added: 15

Version updated: 15

8.8 Clari�cation of rules for standard conversions following template conversion functions

Status: Open

The working paper currently permits the \second standard conversion sequence" to be any

of the ones of rank \exact match":

� No conversion

� Lvalue-to-rvalue conversion

� Array-to-pointer conversion

� Function-to-pointer conversion

� Quali�cation conversion

I believe that this should be further restricted to only permit the lvalue-to-rvalue conversion

(and, of course, no conversion).

My understanding of the original restriction was to disallow any conversions after the

template-based user-de�ned conversion. There doesn't seem to be any special reason why

the quali�cation conversion should be permitted when others were disallowed.

It is useless to include the array-to-pointer and function-to-pointer conversions because the

syntax does not permit such a conversion function to be written.

Answer: 13.3.3.1.2 [over.ics.user] paragraph 3 should be replaced with: If the user-de�ned

conversion is speci�ed by a template conversion function, the second standard conversion

sequence must be either \No conversions required" or \Lvalue-to-rvalue conversion".

Version added: 15

Version updated: 15

8.9 Question: Can a member class template be declared and then de�ned later within the

class?

Status: Open

struct A {

struct B;

struct B {};

template <class T> struct C;

template <class T> struct C {};

};



96-0094/N0912 - Template Issues and Proposed Resolutions - Revision 15 38

Answer: Yes, as with normal nested class, member class templates can be declared and

de�ned later within the class (or later, outside of the class).

Version added: 15

Version updated: 15

Editorial Issues

99.1 The beginning of clause 14 does not su�ciently describe the kind of template declarations

that are permitted. For example, the term \template member" is not de�ned, and could

be construed to include data members, typedefs, etc.

99.2 Nontype conversions (from issue 2.6) are not described in the WP.

99.3 Template syntax does not support an empty template argument list (<>).


