
96-0089 1 N0907

 Doc. no.: X3J16/96-0089
 WG21/N0907
 Date: 25 May 1996
 Project: Programming Language C++
 Reply to: Beman Dawes
 beman@dawes.win.net

Clause 17 (Library Introduction) Issues List - Version 6

History:

Initial: Distributed at the start of the Tokyo meeting.
Version 2: Distributed during the Tokyo meeting.
Version 3: Distributed in the post-Tokyo mailing. Reflects votes

taken in Tokyo and issues added by the LWG sub-group.
Version 4: Distributed in the pre-Santa Cruz mailing.
Version 5: Distributed at the Santa Cruz meeting. Reflects resolution

changes by the working group.
Version 6: Distributed in the pre-Stockholm mailing. Reflects votes

taken in Santa Cruz and new issues added.

<-->

Work Group: Library Clause 17
Issue Number: 17-001
Title: Header Inclusion Policy
Section: 17.3.4.1 [lib.res.on.headers]
Status: Open
Description:

The (original) header inclusion policy of allowing any C++ header to include
any other C++ header creates portability problems for users. For example, the
following might compile correctly with some implementations and fail with
others:

#include <string> // programmer meant to write < iostream>
using namespace std;
int main() {
 cout << "Hello, C++ World" << endl;
 return 0;
 }

The (current) header inclusion policy of specifying exactly which C++ headers
include which other C++ headers causes difficulty for implementors. The worst
case is when one header requires reference to another but the other is not
specified as included. Another troublesome case occurs when the
implementation of one header (like <complex>) could benefit from access to
something in another header (like template numeric_limits in <limits>).

The LWG has discussed these problems at length, and explored several
alternatives including implementor’s namespaces (rejected because they don’t
allow template specializations by users). The approach discussed in Santa
Cruz is to:

-- Put more effort into correcting the synopsis lists of required
header #includes. Sensible inclusion minimizes both implementor’s and
user’s problems.

-- Continue to require inclusion of headers listed in synopsis, but
also allow inclusion of names from other headers. This allows a user
to write portable programs (by only relying on names from the required
headers), allows automatic diagnosis of non-portable programs, and yet
also gives implementor’s access to names they want and need.

Resolution:

 Change the Working Paper as follows:

96-0089 2 N0907

 Add a third paragraph to 17.3.4.1 [lib.res.on.headers]:

Option 1 (Allows implementors to include entire additional C++
headers):

A C++ header may include other C++ headers in addition to those
listed in its Synopsis subclause.

Option 2 (Only template names from other headers may be made visable,
since there are known workarounds for all other names):

A C++ header may include templates from other C++ headers.

Delete the footnote (left over from the original policy) in 17.3.4.2
[lib.res.on.macro.definitions] which reads:

C++ headers must include a C++ header that contains any needed
definition.

 Delete the editorial box from 17.3.4.1 [lib.res.on.headers].

Requestor: Beman Dawes
Owner:
Emails:
Papers:

<-->

Work Group: Library Clause 17
Issue Number: 17-016
Title: Remove C names from namespace std
Section: 17.3.1.2 [lib.headers]
Status: Open

Description:

Placing the C library in namespace std causes difficulty for some
library implementors.

Resolution:

 Change the Working Paper as follows:

In 17.3.1.2 [lib.headers], table 22, C++ Headers for C Library
Functions, delete leading “c” from header names and append “.h” to
header names.

In 17.3.1.2 [lib.headers], replace paragraph 4 with:

Except as noted in Clauses _ lib.language.support_
through _lib.input.output_, the contents of each C++ header for the
C library facility shall be the same as that of the corresponding
header name.h, as specified in ISO C (Clause 7), or Amendment 1,
(Clause 7), as appropriate.

In 17.3.1.2 [lib.headers], delete paragraph 5.

In Annex D, delete section D.4 [depr.c.headers]

Requestor: Cathy Kimmel Joly
Owner:
Emails: Library reflector messages 4598, 4599, 4600, 4601, 4602, 4603,

4604, 4605, 4606, 4607, 4608, 4609, 4610, 4611, 4614, 4615, 4618,
4619, 4620, 4621, 4622, 4623, 4624, 4625, 4626, 4628, 4630, 4632,
4633, 4634, 4635, 4636, 4638, 4639, 4640, 4641, 4643, 4645, 4646,

96-0089 3 N0907

4647, 4650, 4651, 4652, 4653, 4654, 4655, 4656, 4662, 4663, 4664,
4666, 4676, 4689, 4690

Papers:

<-->

Work Group: Library Clause 17
Issue Number: 17-017
Title: Clarification of library derivation
Section: 17.3.4.7 [lib.derivation]
Status: Open

Description:

The current WP only allows a C++ Standard Library class to be derived
from another class only if it is a base class. This overly constrains
implementors.

The “as if” rule does not allow such derivation because it can be
detected (see lib-4536).

Resolution:

 Change the Working Paper section 17.3.4.7 [lib.derivation] as follows:

 Add a new first paragraph:

It is unspecified whether a class in the C++ Standard Library is itself
derived from other base classes (with names reserved to the
implementation).

 Delete the first bullet item which reads:

It is unspecified whether a class in the C++ Standard Library as a base
class is itself derived from other base classes (with names reserved to
the implementation).

Requestor: John Max Skaller
Owner:
Emails: Library reflector messages 4529, 4530, 4532, 4534, 4536, 4538
Papers:

<-->

Work Group: Library Clause 17
Issue Number: 17-018
Title: Clarification of C function-like macros
Section: 17.3.1.2 [lib.headers]
Status: Open

Description:

The current WP’s description of C headers is unclear as to the treatment of
macros. The current wording of 17.3.1.2 paragraph 4 is:

Except as noted in Clauses 18 through 27, the contents of each header
cname shall be the same as that of the corresponding header name.h, as
specified in ISO C (Clause 7), or Amendment 1, (Clause 7), as
appropriate. In this C++ Standard library, however, the declarations
and definitions are within namespace scope _ basic.scope.namespace_ of
the namespace std.

Resolution:

 Replace 17.3.1.2 paragraph 4 of the Working Paper with:

96-0089 4 N0907

Except as noted in Clauses 18 through 27, the contents of each header
cname shall be the same as that of the corresponding header name.h, as
specified in ISO C (Clause 7), or Amendment 1, (Clause 7), as
appropriate. In the C++ Standard library, however, the declarations and
definitions (except for names which are defined as macros in C) are
within namespace scope (_basic.scope.namespace_) of the namespace std.

Names which are defined as macros in C shall be defined as macros in
the C++ Standard library. [Note: the names defined as macros in C
include the following: assert, offsetof, va_start, va_arg and errno.]

Names which are defined as macros in C, but for which license is
granted in C for implementation as functions, shall be defined as
macros in the C++ Standard library. [Note: the names so defined in C
include setjmp and va_end.]

Names which are defined as functions in C shall be defined as functions
in the C++ Standard library. [Note: This disallows the practice,
allowed in C, of providing a "masking macro" in addition to the
function prototype. The only way to achieve equivalent "inline"
behavior in C++ is to provide a definition as an extern inline
function.]

In 17.3.4.2 [lib.res.on.macro.definitions] remove the footnote regarding C
"masking macros."

Requestor: Thomas Plum
Owner: Thomas Plum
Emails: lib-4688
Papers:

<-->

Work Group: Library Clause 17
Issue Number: 17-019
Title: C++ headers with .h forms
Section: (Annex D) D.4 [depr.c.headers]
Status: Open

Description:

[from lib-4548]

I have been looking at issue 17-007 of the Clause 17 Issues list which was
accepted into the WP at the Santa Cruz meeting. This issue added fstream.h,
iomanip.h, iostream.h and new.h to the list of C++ .h headers provided by the
library so that existing programs will continue to work and do approximately
the same things. The intent is for each of the above mentioned headers to
include the corresponding C++ Standard version of the header followed by the
using declaration for each symbol in the header.

This will not really provide a compatible solution. Unlike the .h versions of
the C headers provided for compatibility the above mentioned headers have
not been previously defined in a standard way. This means that the content of
each of these headers will vary at least subtly in each existing
implementation. Since the contents of the .h headers are non-Standard it is
also difficult to determine how different their contents are from the existing
C++ versions of the headers. For example < fstream>, <iomanip> and <iostream>
are now templatized. In <new> the default declaration of new() throws an
exception whereas the declaration in most existing versions of new.h would
not.

It seems likely that providing C++ Standard versions of fstream.h, iomanip.h,
iostream.h and new.h opens the door to lots of compatibility problems. The
includer of the .h headers may reasonably expect their "old" implementation
defined behavior not the C++ Standard one. It will also make it more

96-0089 5 N0907

difficult for library vendors to provide a completely backward compatible
header file solution.

Resolution:

D.4 paragraph 4 currently reads:

The C++ headers

♦ <fstream.h>
♦ <iomanip.h>
♦ <iostream.h>
♦ <new.h>

 are similarly available.

Option 1:

Change “are similarly available” to “are also supplied. The contents
are implementation defined.”

Option 2:

Delete D.4 paragraph 4 entirely.

Requestor: Sandra Whitman
Owner:
Emails: lib-4548, 4556, 4557, 4561
Papers:

<-->

Dispositions:

17-002 Extending namespace std.
Closed in Tokyo by accepting the proposed resolution.

17-003 Violation of Requires preconditions.
Closed in Tokyo by accepting the proposed resolution.

14-004 Should namespace std be subdivided?
Closed in Santa Cruz without taking any action.

17-005 What does “extending namespace std” mean?
Closed in Santa Cruz by accepting the proposed resolution.

17-006 Action when program extends namespace std.
Closed in Santa Cruz by accepting the proposed resolution.

17-007 Which C++ headers have .h forms?
Closed in Santa Cruz by accepting the proposed resolution.

17-008 Relational operator templates.
Closed in Santa Cruz by accepting the proposed resolution.

17-009 Separate Library from Core Language in Document.
Closed in Santa Cruz without taking any action.

17-010 Too Many Classes and Features in Standard Library.
Closed in Santa Cruz without taking any action.

17-011 Library Defined in Terms of Templates.
Closed in Santa Cruz without taking any action.

17-012 Decouple Libraries.
Closed in Santa Cruz without taking any action.

17-013 How will users access non-ISO C symbols using C++ headers?
Closed in Santa Cruz by accepting the proposed resolution’s
sections 1 and 4 only.

17-014 Requirements on compare functions.
Closed in Santa Cruz by accepting the proposed resolution.

17-015 Restrictions on macro definitions clarification.
Closed in Santa Cruz by accepting the proposed resolution.

