Doc. no.: X3J16/ 96- 0089

WG&E21/ N0O907
Dat e: 25 May 1996
Proj ect: Programm ng Language C++
Reply to: Beman Dawes

beman@awes. wi n. net

Clause 17 (Library Introduction) |ssues List - Version 6

Hi story:
Initial: Distributed at the start of the Tokyo neeting.
Version 2: Distributed during the Tokyo neeti ng.
Version 3: Distributed in the post-Tokyo nailing. Reflects votes
taken in Tokyo and issues added by the LWG sub-group.
Version 4: Distributed in the pre-Santa Cruz mailing.
Version 5: Distributed at the Santa Cruz nmeeting. Reflects resolution
changes by the working group.
Version 6: Distributed in the pre-Stockholmnmailing. Reflects votes
taken in Santa Cruz and new i ssues added.
ST N NS >
Work G oup: Li brary C ause 17
| ssue Nunber: 17-001
Title: Header Inclusion Policy
Secti on: 17.3.4.1 [lib.res.on. headers]
St at us: Open
Descri ption:

The (original) header inclusion policy of allow ng any C++ header to include
any other C++ header creates portability problens for users. For exanple, the
followi ng mght conpile correctly with sone inplenmentations and fail with

ot hers:

#include <string> // progranmer neant to wite <iostreanp
usi ng namespace std;
int main() {

cout << "Hello, C++ World" << endl;

return O;

}

The (current) header inclusion policy of specifying exactly which C++ headers
include which other C++ headers causes difficulty for inplenmentors. The worst
case i s when one header requires reference to another but the other is not
specified as included. Another troubl esome case occurs when the

i mpl ement ati on of one header (like <conplex>) could benefit from access to
sonet hing in another header (like tenplate nuneric_limits in <limts>).

The LWG has di scussed these problens at | ength, and expl ored several
alternatives including inplenentor’s nanespaces (rejected because they don't
allow tenpl ate specializations by users). The approach discussed in Santa
Cruz is to:

-- Put nore effort into correcting the synopsis lists of required
header #includes. Sensible inclusion mnimzes both inplenentor’s and
user’s probl ens.

-- Continue to require inclusion of headers listed in synopsis, but
al so allow inclusion of nanes from other headers. This allows a user
to wite portable prograns (by only relying on nanmes fromthe required
headers), allows automatic diagnosis of non-portable prograns, and yet
al so gives inplenentor’s access to nanes they want and need.

Resol uti on:

Change t he Working Paper as foll ows:

96-0089 1 NO907

Add a third paragraph to 17.3.4.1 [lib.res.on. headers]:

Option 1 (Allows inplenentors to include entire additional C++
header s) :

A C++ header may include other C++ headers in addition to those
listed in its Synopsis subclause.

Option 2 (Only tenplate nanes from ot her headers may be nmamde visabl e,
since there are known workarounds for all other nanes):

A C++ header may include tenplates from ot her C++ headers.

Del ete the footnote (left over fromthe original policy) in 17.3.4.2
[lib.res.on. macro.definitions] which reads:

C++ headers nust include a C++ header that contains any needed
definition.

Del ete the editorial box from17.3.4.1 [lib.res.on. headers].

Request or: Beman Dawes

Omner :

Emai | s:

Paper s:

S D e R e >
Work Group: Li brary d ause 17

I ssue Number: 17-016

Title: Renove C nanes from nanespace std
Secti on: 17.3.1.2 [lib. headers]

St at us: Open

Descri pti on:

Placing the Clibrary in nanespace std causes difficulty for sone
l'ibrary inplenmentors.

Resol uti on:
Change the Working Paper as follows:

In 17.3.1.2 [lib. headers], table 22, C++ Headers for C Library
Functions, delete leading “c” from header names and append “.h” to
header names.

In 17.3.1.2 [lib.headers], replace paragraph 4 with:

Except as noted in Clauses _ lib.language.support_
through _lib.input.output_, the contents of each C++ header for the
C library facility shall be the same as that of the corresponding
header name.h, as specified in ISO C (Clause 7), or Amendment 1,
(Clause 7), as appropriate.

In 17.3.1.2 [lib.headers], delete paragraph 5.
In Annex D, delete section D.4 [depr.c.headers]

Requestor: Cathy Kimmel Joly

Owner:

Emails: Library reflector messages 4598, 4599, 4600, 4601, 4602, 4603,
4604, 4605, 4606, 4607, 4608, 4609, 4610, 4611, 4614, 4615, 4618,
4619, 4620, 4621, 4622, 4623, 4624, 4625, 4626, 4628, 4630, 4632,
4633, 4634, 4635, 4636, 4638, 4639, 4640, 4641, 4643, 4645, 4646,

96-0089 2 NO907

4647, 4650, 4651, 4652, 4653, 4654, 4655, 4656, 4662, 4663, 4664,
4666, 4676, 4689, 4690

Paper s:

S e R . >
Work Group: Li brary d ause 17

I ssue Number: 17-017

Title: Clarification of library derivation

Secti on: 17.3.4.7 [lib.derivation]

St at us: Open

Descri pti on:

The current WP only allows a C++ Standard Library class to be derived
fromanother class only if it is a base class. This overly constrains
i mpl ement ors.

The “as if” rule does not allow such derivation because it can be
detected (see lib-4536).

Resolution:

Change the Working Paper section 17.3.4.7 [lib.derivation] as follows:

Add a new first paragraph:
It is unspecified whether a class in the C++ Standard Library is itself
derived from other base classes (with names reserved to the
implementation).

Delete the first bullet item which reads:
It is unspecified whether a class in the C++ Standard Library as a base
class is itself derived from other base classes (with names reserved to

the implementation).

Requestor: John Max Skaller

Owner:

Emails: Library reflector messages 4529, 4530, 4532, 4534, 4536, 4538
Papers:

< >

Work Group: Library Clause 17
Issue Number: 17-018

Title: Clarification of C function-like macros
Section: 17.3.1.2 [lib.headers]

Status: Open

Description:

The current WP’s description of C headers is unclear as to the treatment of
macros. The current wording of 17.3.1.2 paragraph 4 is:

Except as noted in Clauses 18 through 27, the contents of each header
cname shall be the same as that of the corresponding header name.h, as
specified in ISO C (Clause 7), or Amendment 1, (Clause 7), as
appropriate. In this C++ Standard library, however, the declarations

and definitions are within namespace scope _ basic.scope.namespace__ of
the namespace std.

Resolution:

Replace 17.3.1.2 paragraph 4 of the Working Paper with:

96-0089 3 NO907

Except as noted in Clauses 18 through 27, the contents of each header
cnane shall be the sane as that of the correspondi ng header nane.h, as
specified in SO C (dause 7), or Amendnent 1, (Clause 7), as
appropriate. In the C++ Standard library, however, the declarations and
definitions (except for nanes which are defined as nmacros in C are

wi t hi n nanespace scope (_basi c. scope. nanespace_) of the nanespace std

Nanmes which are defined as macros in C shall be defined as macros in
the C++ Standard library. [Note: the nanmes defined as nmacros in C
include the follow ng: assert, offsetof, va_start, va_arg and errno.]

Names which are defined as macros in C, but for which license is
granted in C for inplenentation as functions, shall be defined as
macros in the C++ Standard library. [Note: the nanes so defined in C
include setjnp and va_end.]

Narmes which are defined as functions in C shall be defined as functions
in the C++ Standard library. [Note: This disallows the practice
allowed in C, of providing a "masking macro" in addition to the
function prototype. The only way to achi eve equivalent "inline"
behavior in C++ is to provide a definition as an extern inline
function.]

In 17.3.4.2 [lib.res.on.nacro. definitions] renove the footnote regarding C
"maski ng macros. "

Request or: Thomas Pl um

Oaner : Thomas Pl um

Emai | s: i b-4688

Paper s:

Qm o e m o o e e o e mmm e ee——oa >
Work G oup: Li brary C ause 17

I ssue Nunber: 17-019

Title: C++ headers with .h fornms
Secti on: (Annex D) D.4 [depr.c. headers]
St at us: Open

Descri ption:

[from |ib-4548]

I have been | ooking at issue 17-007 of the Cl ause 17 Issues |list which was
accepted into the WP at the Santa Cruz neeting. This issue added fstream h,
iomani p.h, iostreamh and new h to the list of C++ .h headers provided by the
library so that existing prograns will continue to work and do approxi mately
the sane things. The intent is for each of the above mentioned headers to
include the correspondi ng C++ Standard version of the header followed by the
usi ng declaration for each symbol in the header

This will not really provide a conpatible solution. Unlike the .h versions of
the C headers provided for conpatibility the above nentioned headers have
not been previously defined in a standard way. This neans that the content of
each of these headers will vary at |east subtly in each existing

i npl ementation. Since the contents of the .h headers are non-Standard it is
also difficult to determne how different their contents are fromthe existing
C++ versions of the headers. For exanple <fstreanp, <ionmanip> and <iostreanp
are now tenplatized. |In <new> the default declaration of new() throws an
exception whereas the declaration in nost existing versions of new h would
not .

It seens likely that providing C++ Standard versions of fstreamh, ionanip.h
iostreamh and new. h opens the door to lots of conpatibility problems. The
includer of the .h headers may reasonably expect their "old" inplenmentation
defined behavior not the C++ Standard one. It will also make it nore

96-0089 4 NO907

difficult for library vendors to provide a conpletely backward conpatible

header file sol ution.
Resol uti on:
D. 4 paragraph 4 currently reads:

The C++ headers

<f stream h>
<i omani p. h>
<i ostream h>
<new. h>

* & o o

are simlarly avail abl e.
Option 1:

Change “are similarly available” to “are also supplied. The contents
are implementation defined.”

Option 2:

Delete D.4 paragraph 4 entirely.
Requestor: Sandra Whitman
Owner:
Emails: lib-4548, 4556, 4557, 4561
Papers:

< >

Dispositions:

17-002 Extending namespace std.

Closed in Tokyo by accepting the proposed resolution.

17-003 Violation of Requires preconditions.

Closed in Tokyo by accepting the proposed resolution.

14-004 Should namespace std be subdivided?

Closed in Santa Cruz without taking any action.

17-005 What does “extending namespace std” mean?

Closed in Santa Cruz by accepting the proposed resolution.

17-006 Action when program extends namespace std.

Closed in Santa Cruz by accepting the proposed resolution.

17-007 Which C++ headers have .h forms?

Closed in Santa Cruz by accepting the proposed resolution.

17-008 Relational operator templates.

Closed in Santa Cruz by accepting the proposed resolution.

17-009 Separate Library from Core Language in Document.

Closed in Santa Cruz without taking any action.

17-010 Too Many Classes and Features in Standard Library.
Closed in Santa Cruz without taking any action.

17-011 Library Defined in Terms of Templates.

Closed in Santa Cruz without taking any action.

17-012 Decouple Libraries.

Closed in Santa Cruz without taking any action.

17-013 How will users access non-ISO C symbols using C++ headers?
Closed in Santa Cruz by accepting the proposed resolution’s
sections 1 and 4 only.

17-014 Requirements on compare functions.

Closed in Santa Cruz by accepting the proposed resolution.

17-015 Restrictions on macro definitions clarification.

Closed in Santa Cruz by accepting the proposed resolution.

96-0089 5

NO907

