Docurnent Nunber: W&E21/ NO905
X3J16/ 96- 0087
Date: 28 May 1996
Project: Programm ng Language C++
Reply to: WlliamM Mller
wnm@nwor | d. st d. com

QUALI FI ED NAME LOOKUP | N USI NG DECLARATI ONS

I. SUWMARY OF THE | SSUE

In refl ector nessage core-6506, M ke Anderson pointed out the
foll owi ng exanple from7.3.3 [nanmespace. udecl], paragraph 11:

nanespace B {
struct g { };

voi d g(char); /1l OK: hides struct g
voi d func() {
using B::g;
g('a); /1 calls B::g(char)
struct g g1l; /1 gl has class type B::g
}
The issue is whether the declaration of gl is well-fornmed. |If it is,

then the | ookup in the using declaration is required to find both
declarations of g in namespace B and introduce both into the
function’s scope. |If, on the other hand, references in using
declarations are subject to the normal hiding rules (in which the
declaration of struct g can only be referred to in an el aborated type
specifier), the declaration of gl is ill-forned.

Il. REFLECTOR REFERENCES
The following nessages on the core reflector dealt with this topic:

6508- 6510; 6513-6520; 6522-6524; 6526-6528; 6580- 6585, 6684,
6688.

I'11. ANALYSI S

Paragraph 2 of 3.4.2.2 [nanespace. qual] describes the | ookup of a
nanespace-qualified name as resulting in a set of declarations (as
opposed to entities). |In a case such as the exanple cited above, the
set will contain _both_ the declarations of g from nanespace B

Gven X.:m where X is a nanmespace, if mis declared directly
in X, let S be the set of all such declarations of m

The question then beconmes what to do with the declarations so found.
Later in the cited paragraph, the following restriction is nade:

If S has exactly one nenber then X :mrefers to that nenber.

O herwise if the use of mis not one that allows a unique
declaration to be chosen fromS, the programis ill-forned.
[Note: the choice could be made by overl oad resol ution
(_over.match_) or resolution between class nanes and non-cl ass
nanes (_cl ass.nane_).

It is clear that this wording is deficient with respect to using
declarations; taken literally, it would prohibit using declarations

that refer to overloaded functions. A better formnulation m ght be:

If S has exactly one nenber then X::mrefers to that nmenber.
O herwise, if the use of mis a using-declaration, then X :m
refers to all the declarations in S. OQherwise, if the use of
mis not one that allows a unique declaration to be chosen
fromS, the programis ill-formed

G ven this rewording, which is necessary to allow for using
declarations that refer to a set of overloaded functions, the question
is not whether the | ookup finds or does not find a hidden class nane,
as was supposed in the early part of the reflector discussion, but
only whether a hidden class nane found by the | ookup is introduced
into the scope of the using declaration as a hidden class nanme or not.

I V. ALTERNATI VES

Al'l declarations found by the | ookup are introduced into the scope of
the using declaration, hence the exanple cited above is correct.

This would seemto be the npbst consistent approach -- since multiple
decl arations (of overloaded functions) are already being "cloned" into
the scope of the using declaration, it would seem strange to excl ude
the declaration of the class nanme, since it also is a nenber of the
set resulting fromthe | ookup.

Bjarne Stroustrup indicated (in reflector nmessage core-6513) that he
believes that the exanple "reflected the intent of the extensions
group at the time," and Tom Wl cox opined (in reflector nessage
core-6508) that, as a user, he would expect the exanple to work.

Smal | changes to the current wording of 7.3.3 [namespace. udecl] woul d
be required to inplenent this resolution, mainly to pluralize
references to the "entity" whose declaration is introduced by the
using declaration. (This is primarily due to the current text's
definition in paragraph 3 of clause 3 [basic] that a set of overl oaded
functions constitute a single "entity" and the use of that concept

rat her than the perhaps nore natural concept of "declaration" in the
description of using declarations.) These references are:

paragraph 1: "That name is a synonymfor the name of _one or
nmore entities_ declared el sewhere."

paragraph 8: "The _entities_ declared by a using-declaration
shall be known in the context using _them according to _their
definitions_ at the point of the using-declaration."

No additional normative changes are required to support this option
in particular, paragraph 9 already refers in the plural to the
referents of a using declaration ("A nane defined by a

usi ng-declaration is an alias for its original declarations..."), and
paragraph 10 handl es the case in which a class nane and non-type
entities are both declared. It would probably be helpful to the

reader to add a footnote sonething like the follow ng to paragraph 2
or paragraph 9:

Cl ass names hi dden by non-type nanes declared in the same
nanespace are found by nanespace qualified | ookup

[namespace. qual] and thus are declared as hidden nanes in the
using declarative region, as well.

Option 2:

If a class nane is hidden by a non-type nane in the scope in which it
is declared, only the non-class names fromthe result of the | ookup
are introduced into the scope of the using declaration, hence the
exanpl e above is incorrect.

Thi s approach woul d be nore consistent with the statenent in paragraph
2 of 9.1 [class.nane] that class nanes hidden by non-type nanmes can
only be referred to by an el aborated type specifier. Those advocating
this position in the reflector discussion (John Spicer, core-6515, and
Bill G bbons, core-6520) expressed support for allow ng an el aborat ed
type specifier in the using-declaration syntax, thus allow ng either
the class nane or the non-type nanme to be used.

The changes required to the current wording to support this option
woul d i ncl ude:

paragraph 1: change the syntax to read as foll ows:

usi ng-decl arat i on:
usi ng cl ass-keyopt ::opt nested-name-specifier
unqualified-id
usi ng cl ass-keyopt :: unqualified-id

par agraph 2: "The nmenber nanmes specified in a

usi ng-decl aration are declared in the declarative region in
whi ch the using-declaration appears, _except that if a

cl ass-nane is hidden by a non-class nane in its scope
[class. name] and class-key is onitted fromthe

usi ng-decl aration, the hidden class-nane is not declared in
the using declarative region_."

paragraph 11: change the exanple to read:
struct g gl; // error: struct g not declared

In message core-6684, Bill G bbons offered the followi ng points in
support of this option:

1. Access declarations are now defined as exactly equival ent to using
decl arations, so the behavior of existing inplenmentations with respect
to access decl arations should be considered in resolving this
question. O the three conpilers Bill surveyed, two handl ed using
declarations in a nmanner consistent with this option

2. Al other | ookups in the | anguage except for those in el aborated
type specifiers ignore hidden class names, so using declarations
shoul d do so for consistency.

3. This option allows a finer-grained control over which nanes are
made vi si bl e.

V. RECOMVENDATI ONS

1. Make the change to 3.4.2.2 [nanespace. qual] described in Il above
(as noted, this is mandatory to all ow using declarations to refer to
sets of overloaded functions).

2. Option 1 of IV. This option appears to be what was originally

i ntended; several conmmttee nenbers, speaking as users, expressed
their expectation that using declarations would work this way; and
thi s approach seens nost consistent with the idea of inmporting a set
of decl arations of overloaded functions with a single using

decl arat i on.

