Proposed Responses to the ANSI Public Coments

Josee Lajoie
j osee@net . i bm com

X3J16/ 96- 0086
W&21/ N0904

March 29th, 1996

Thi s docunent incorporates all of the conmmttee resol uti ons adopted
at the Santa Cruz neeting (March 1996).

Thanks to Steve Adantzyk, Pete Becker, Benan Dawes, Dave Dodgson, Bil
G bbons, Philippe Le Mouel, Mke MIler, Nathan Myers, Tom Plum Larry
Podrol i k, Judy Ward and Rick Wlhelmfor their help in providing
responses.

Upon Steve C anmmge’s request, | have put together a list of all the
ANSI C++ public comments and have coll ected the proposed responses
fromthe various WG chairs/issues |ist owners.

I have either included the actual text of the comments in the |ist

bel ow (for the coments that were lists a small issues) or sumari zed
the large comments in an attenpt to keep the list short. |If you would
like the see the entire text for a comment that has been summari zed,
Steve Rumsby’s archive has a softcopy of all the ANSI public coments
or you can let me know and | will email you what | have.

Steve O amage and Tom Plumwi Il provide the official wording for the
answers that will be nailed to the comenters

Each coment is nunbered according to the registrati on nunber used by
X3. | had given tenporary nunbers to sone of the comments at the
Mont erey neeting because X3 had not notified me of the conments
numbers. For these coments | have al so indicated the comment’s
tenporary nunber fromthe pre-Mnterey neeting.

You will notice that there are two kinds of conments in the |ist
bel ow.
o official coments: those for which X3 received a signed hard copy

ver si on.
o unofficial coments: those for which X3 only received a soft copy
versi on.
We decided in Monterey that we woul d answer both kinds of coments
so all in all, this categorization does not make nmuch difference to

us.

For some reason, X3 received nany copies of sone of the comments but
assigned to each copy a different nunmber. For this reason, you wll
find some coorments in the list below that have nore than one nunber
o conmments 11 and 13 are the sanme comment

comrents 14, 16 and unregi stered conmrent 5 are the sane coment
commrent 23 and unregi stered comment 1 are the sane coment
commrent 24 and unregistered coment 11 are the sanme conment

unregi stered comments 8, 9 and 10 are the same coment (i.e. they
are all part of the hash table proposal presented in coment 9).

O o0Oo0oOo

If you have any question, coment, objection to the classification
bel ow, let me know

ER R bk o S S I S Rk O O O I R S S R I S S O R O O O R I

O ficial Comments

IR R R R SR RS EEEEEEEEEEEEEEEEEEEREEEREEEEEEREEEREEEREEEEEEREEEREEREEEEEEEEEEEEEES

1- Comment from Daniel Louis MIler / DSC Conmuni cations
Recei ved a hardcopy only.
Addr ess: DSC Communi cati ons Corp
P. 0. Box 796367
Dal | as, TC 75379-6367

Qddity 1:
The switch statenent:
switch (condition) statenent
"statenment’ should be a variant of conpound statenent.

-> Rej ect ed.
-> Forcing switch to use {} breaks C conpatibility.

Addity 2
Change the syntax for try and catch bl ocks to be:
try-bl ock:
try statenment handl er-seq
handl er:

catch (exception-declaration) statenent

-> Rej ect ed.

-> The C++ scoping nmechani smuses braces; it was a deliberate choice
-> to have try and catch bl ocks use braces; braces are needed with try
-> bl ocks to properly associate a catch block with its associated try
-> block (this solves the sane problem as the dangling el se problem
-> wth the if statenent).

2- Comment from Stephen Bard
Addr ess:
M. Stephen Bard
M crosoft Corp
One M crosoft Way
Redrmond, WA 98052- 6399

Add an additional 'clean’ clause to the try/catch nechani sm

-> Rejected, request for an extension

3- Comment from Bryant Harris / Edge Research
Addr ess:
Bryant Harris
Edge Research
1 Harbour Place Suite # 553
Port snout h, NH 03801

Add a nechanismto C++ for inplied nmenber function calls.

-> Rejected, request for an extension

4- Comment from Peter Durham/ M crosoft
Recei ved by enail
emai | address: peterdur@ricrosoft.com

Add a deferred assi gnnent operator.

-> Rej ected, request for an extension

5- Comment from Allen B. Tayl or
Recei ved by enail

->
->
->

->

->
->

6-

->

emai | address: allen.taylor@rior.ca or atayl or @par.ca

5.1 delete and arrays
The syntax "del ete x" should recogni ze whether or not it is
deleting an array and call operator delete() or operator delete[]()
appropriately.

Rej ect ed.
The conmittee suggests that users who want only one way of witing
new and del ete expressions use the follow ng coding practice:

T p = new T[1];

delete[] p;

5.2 d obal delete should zero its pointer argunent
The gl obal del ete operator should zero the pointer passed as an
argunent, thus allowing future attenpts to delete via that pointer
benign. Note that this would change the function decl arations of
the del ete operators fromvoid operator delete(void *) to void
operator delete(void *& and fromvoid operator delete[](void *) to
voi d operator delete[](void *&)
Rej ect ed.
Thi s breaks existing code.

5.3 Meani ng of for statenent
Accepted: see 6.5.3[stnt.for]

5.4 Arbitrary precision type or Binary Coded Deci mal Type
Rej ect ed, request for extension

5.5 Thread cl ass
Rej ect ed, request for extension

5. 6 Renew oper at or
Rej ect ed, request for extension

Conment from John Mul hern / Si emens Corporation
Recei ved by enai
emai | address: jmul hern@npros. com

[l1ib.basic.string]

Rat her than pointing out each syntax error in the declaration of
class basic_string, | would point out the general error thoughout this
section. Except where 'basic_string is the nane of a constructor or
destructor, 'basic_string’ nust be nodified to:

"basic_string< charT, traits, Allocator > . This error occurs again
in sections: [lib.string::assign] (the last function),
[lib.string::assign] (the last function), [lib.string::renmove] (the
|l ast two functions), and in nunerous places througout the text of
[lib.string::replace] Any decent word processor can find all the
occurances of this error.

Accept ed.

[lib.string.cons] (and lots of other places...)
The very last line of the section: There is no basic_string(charT)
constructor. Unless it was the conmitee’s intent have such a
constructor, this leads to errors throughout the rest of
[lib.strings]. | noticed this error in:
[lib.string.cons] last line at end "(¢)’ s/b’'(1, ¢)’
[lib.string.op+=] last line at end '(¢)’ s/b’'(1, ¢)’
[lib.string::append] append(size_ type, charT) argunents to the

return value are given backwards: "(¢, n)’ s/b’'(n, ¢).

[lib.string::assign] assign(size type, charT) argunents to the

return value are given backwards: "(¢, n)’ s/b’'(n, ¢).

[lib.string::insert] insert(size_type, size_type, charT) arguments to
the return value are given backwards: "(¢, n)’ s/b ’'(n

c)’ .

[lib.string::replace] replace(size type, size type, charT) argunents to
the return value are given backwards:”(¢, n)’ s/b’'(n, c)’.

[lib.string::find] last line: "(¢)’ s/b’'(1, ¢c)’.
[lib.string::rfind] last line: "(¢, n)’ s/b’(1, ¢)’
[lib.string::find.first.of] last line: "(¢) s/b’(1, ¢)’
[lib.string::find.last.of] last line: "(¢)’ s/b’(1, ¢)’
[lib.string::find.first.not.of] last line: "(¢)’ s/b’(1, ¢)’
[lib.string::find.last.not.of] last line: "(¢)’ s/b’'(1, c)’
[lib.string::op+] operator+(charT, basic_string<...>&) in the

"Returns:’ line, the constructor argument nust be ' (1,
[lib.string::op+] operator+(basic_string<...>& charT) in the

"Returns:’ line, the constructor argunment mnust be ' (1,

-> Accept ed.

[lib.string::replace]
In the "Effects:’ section for the first replace() function, in the
first sentence, renmove the '& fromin front of the nanme ’'posl’

-> Accepted

[lib.string::conpare]
The first conpare() function in this section nust be declared ’'const’
as it was declared in [lib.basic.string].

-> Accepted

[lib.string.cons]

For explicit basic_string(Allocator& Allocator()), Table 38, it
seens to ne that the required value for data() should be 'O because
the size() == 0, following the requirements given in section
[lib.string.ops]. The capacity should, however, be left unspecified.
I can not think of any circumstance in which data() woul d be ot her
than zero for a string of length zero. On the other hand, | can well
i magi ne code expecting a zero-pointer fromdata() when the string
size() is zero. <c_str() returns a traits::eos() terninated, zero

length string for a string of size() == 0. The standard shoul d be
more clear that that is the case for c_str() since this is what
programmers will expect and indeed need.

-> Rej ect ed.
-> The senantics are required for proper integration with STL.

[l1ib.basic.string]
size_type copy(charT*, size_type, size_type)
This function is not declared to be "const’, but the function is

i ndeed "const’ with respect to *this. As the copy() function m ght be

especially useful with const strings, | believe the copy() function
shoul d be decl ared const.

-> Accepted
[lib.string.op+]
In the "Returns’ section for the first function, i.e. 'Returns:
| hs. append(rhs)’, surely the commttee doesn’t intend what is
witten there. It should be sonething |ike 'Returns:
basic_string<...>(lhs, rhs);’ but of course the concatenating
constructor is not part of the basic_string public interface. It may
wel|l be part of the private interface.

-> Accept ed.

[lib.string::find]
M ssing a comma between (s, n) and pos on the "Returns’ line for
size_type find(const charT*, size_type, size type) const;

-> Accepted

[lib.string::rfind]
The default value for the 'pos’ argunent should be "0’ and not the

stated 'npos’. This applies to the 1st, 3rd and 4th versions of rfind

as presented. ’'pos’ refers to the offset into *this fromthe

beginning. rfind() searches fromits last character to at(pos) just

I hs)’

rhs)’

as find() searches fromat(pos) to the | ast character.
In the 'Effects’ section, the first condition nust be identical to
find()'s first condition, i.e. 'pos <= xpos and xpos + str.size() <=
size()’

-> Rejected. The stated semantics of rfind are those desired.

[lib.string::find.last. of]
The default value for the 'pos’ argunent should be "0’ and not the
stated 'npos’. This applies to the 1st, 3rd and 4th versi ons of
find_l ast _of as presented. ’'pos’ refers to the offset into *this from
the beginning. find_last_of() searches fromits last character to at(
pos) just as find first_of() searches fromat(pos) to the |ast
character. 1In the 'Effects’ section, the first condition nust be
identical to find first of()’s first condition, i.e. 'pos <= xpos and
Xpos < size()’.

-> Rejected. The stated senmantics of find |ast_of are those desired.

[lib.string::find.last.not.of]
The default value for the ’pos’ argunent should be "0 and not the
stated 'npos’. This applies to the 1st, 3rd and 4th versi ons of
find last _not_of() as presented. ’'pos’ refers to the offset into
*this fromthe beginning. find last not of () searches fromits |ast
character to at(pos) just as find_first_not_of() searches from at(
pos) to the | ast character.

-> Rejected. The stated semantics of find_|ast_not_of are those desired.

In the 'Effects’ section, the first condition nust be identical to
find_first_not_of()’s first condition, i.e. 'pos <= xpos and xpos <
size()’.

-> Rejected. The condition is stated correctly for the desired senantics.

[Section 21.1.1.10.8] (which bears no other identifier...)
operator>>(): It seens to ne that, to be useful, operator>>() nust
eat zero or nore delinmiters specified by

basic_string<...> :traits::is_del() prior to reading each string
This should be specifed in the standard, to prevent varying

i npl ementations. If that is not the committee’s intent, it should be
explicitly stated in the standard what the intent is.
-> Still being considered.

[lib.string::renove]

This is the only user experience | have to date concerning ny

i mpl ementation of <string> (which I'"mstill testing). M conpiler
xI C, and many others, has trouble with resolving overloadi ng of the
calls

renove(6);
renove(iterator);

because iterators for basic_string<char> are of

type char* and char*/int overloading is unresolvable. Now, renove(6)
calls renove(size type, size type) but xIC throws up on the
char*/int overload and so never finds renove(size type, size_type).
I’ mnot sure what you could do to renedy that situation. It is nice
to say renove() to erase the entire string. Perhaps

basic_string<....>& renove(); and
basic_string<....>& renove(size type, size type) with no defaults given

Perhaps xI C is m sbehaving and this isn’t a probl em
Per haps this problemexists el sewhere and | haven’t encountered it yet
i n user experience.

-> Not a problem

[lib.string::insert]
iterator insert(iterator p, size_type n, charT ¢ = charT()); There

is no Returns’ line for this function. Presumably, this should be

"Returns: p'.
-> Rejected. The correct return value is void.

[l1ib.string.cons]
Nit picking. The tenplate constructor:
tenplate < class Inputlterator >
basic_string(Inputlterator begin,

I nputlterator end,

Al l ocator& Allocator());
Conpilers will probably Iike this better if the argunment nanes are
"first’ and 'last’ rather than 'begin’ and 'end’. This would al so be
consi stent with usage everywhere else in the standard with regard to
iterators. As a side benefit, the contents of box |abelled Table 43
woul d then make consistent sense. The 'Notes:’' section, needless to
say, doesn’'t nmake any sense as printed in the draft standard.

-> Editorial

.string::find]

.string::rfind]

.string::find.first. of]

.string::find.last. of]

.string::find.first. not. of]

.string::find.last.not. of]

For all of these functions there should sone conment in the standard
whi ch says that ’'pos is the mininumof pos and size()’' thereby dealing
with the otherw se unconstrai ned argunent pos. These functions do not
t hrow exceptions for pos > size().

——————
OCOTCTUTUTUT

[1ib.exception]
Yes, this not part of [lib.strings] but I had to inplenent <stdexcept>
in order to inplenent <string> The copy constructor cannot return
any val ue, so 'exception& exception(const exception&) throw);’
shoul d be ’exception(const exception&) throw();’.

-> Rejected. The current semantics are those intended by the LWG

-> | f pos >= size(), then nothing is found.

7- Comment from Marc Shepherd
Recei ved by enail
emai | address: nshepherd@rhfl . sbhi.com

1 General Conments

In general, | find the text to be of an inferior quality to the |ISO
C Standard. The C Standard’'s cl ear division between syntax,
semantics, and exanples, is lacking. Notes and exanples are mingled
with normative text and are not always clearly delineated. There
has obvi ously been an attenpt to rel egate non-normative coments to
"notes," but the docunent is very uneven in this regard. | have
poi nted out sonme of the inconsistencies, but the entire text needs a
t hor ough goi ng-over, especially the Library clauses. Also, the
notation used to call out non-normative text (using square brackets)
is particularly ugly.

-> Rejected.

-> The committee prefers that the style of the C++ Standard be cl oser

-> to the style used in the ARM [C++ Annot at ed Reference Manual, by

-> Margaret Ellis and Bjarne Stroustrup], nmanual with which many C++

-> progranmers are famliar. Also, the division used in the C Standard

-> has its drawbacks: the constraints and the semantics rules are

-> described separately causing sone text to be duplicated in both

-> places.

The Conmittee seens undeci ded between the words "inpl enmentation”
and "processor." | prefer "inplementation," since it’s what the C
Standard uses, and |’'ve flagged occurrences of the later as errors.

->

->
->
->
->
->
->

Editori al .

The text is cavalier in its use of the word "shall" - often
"shal I" conveys a requirenent on the inplenentation but sonetines,
it conveys a requirenent on the programrer. | have pointed out a

few such inconsistencies, but the entire docunent needs a thorough
review.
Editorial .

A non-normative annex similar to Annex G of the I SO C Standard,
whi ch summari zes all the kinds of unspecified, undefined and

i mpl enent at i on- defi ned behavi ors, woul d be hel pful

Editorial.

Nanmespaces

Lack of Prior Art.

Conpl exi ty.

Per vasi veness.

Synt acti ¢ Confusi on.
Nanespaces and cl asses share use of the :: operator for scope
resolution. Yet, the operator works very differently for
namespaces and cl asses even in cases that have an appearance of
simlarity.

Lack of Bal ance between the Problem and the Sol ution
H gh Probability of Error
Durability of Standards.

These conmments were consi dered before nanespaces were adopted. The
committee decided that the benefits of namespaces outwei gh the
concerns described here.

Re, Syntactic confusion

The conmittee has considered this comment in greater details and
nmodi fi ed the nane | ook up rules for nanespace nenbers after the ':
operator. See 3.4.2.2 [nanespace. qual].

New- Styl e Cast Operators

static_cast

Since static_cast is a new concept, there can be no issues of
backward-conpatibility. Nowis the tine to define it sensibly. |
woul d recommend farther restricting static_cast as follows:

1. Astatic_cast between two integral types is well-forned iff al
possi bl e val ues of the source type can be represented in the
destination type.

For exanple, on a machine with 16-bit shorts and 32-bit ints and
Il ongs, a static_cast froma long to an int would be well-forned,
but a static_cast froman int to a short would be not (since, on
such a machine, not all ints have a well-behaved conversion to
short.)

2. A static_cast between two floating point types is well-forned
iff all possible values of the source type have a well-defined
conversion to the destination type (as described in 4.8). The
intent is to prohibit use of static_cast where there is a
possibility of undefined behavior. Because this is a
compi l e-time check, a conversion that is possibly undefined
shoul d be disallowed as a static_cast.

3. Astatic_cast froma floating point type to an integral type is
well -fornmed iff all possible values of the source type can be
represented (after truncation) in the destination type. The
intent, again, is to disallow a conversion that could be

->
->
->
->
->
->

->
->

undefined (as described in 4.9).

4, A static_cast froman integral type to a floating point type is
al ways wel | - f or med.

5. A static_cast between an integral type and bool, in either
direction, is always well-forned.

6. A static _cast froman integral type to an enuneration type is
always ill-forned. (This follows the pattern of disallow ng
conversions that might result in an undefined/unspecified value.)

7. A static_cast froman enuneration type to an integral type is
well-formed iff the destination type is |arge enough to hold all
possi bl e val ues of the enuneration

8. A static_cast frombool to a floating point type is always
wel | - f or ned.

9. A static_cast froma floating point type to bool is always
ill-formed. (It is ill-fornmed, because such a conversion
requi res an exact conparison of the floating point value to
zero. And, as all programers should know, the result of a
floating point operation should never be conpared to an exact
val ue, because of the vagaries of round-off errors.)

These restrictions allow static _cast to live up toits billing as a
vehicle for well-behaved casts only.

Rej ected, request for an extension.

The only other choice for these conversions is reinterpret_cast.
That woul d be a bad choice since reinterpret_cast is reserved

for extrenmely dangerous operations; the intent is that you should
be willing to grep for all instances of reinterpret_cast in a
program and know that each instance is one which really nust be

t horoughl y understood. Since the above conversions are so conmon,
requiring reinterpret_cast for themwould ruin the carefu

di stinction between comon and hi ghly unusual casts.

dynam c_cast

G ven the farther restrictions to static_cast described above,
there is a natural and inportant extension to dynami c_cast. |
woul d recommend pernitting enuneration and built-in nuneric types
(and references to them) to be the destination type of a

dynani c_cast .

Rej ected, request for an extension.
C Li nkage

Subcl ause 7.5 says that "Every inplenentation shall provide for
linkage to functions witten in the C programmi ng | anguage. "
believe this requirenent is short-sighted. It is true that, today,
C and C++ coexist on nost platforns, but there is no assurance that
this will always be true. A vendor inplenenting C++ on a platform
that has no existing C support should not be obligated to provide
such support. Naturally, many vendors will choose to do so, but
this should be a "quality of inplenentation" issue, not a normative
requirenent.

I would revise 7.5 to say:

1. Whether an inplenmentation provides C linkage is inplenentation-
def i ned.

->
->
->

7

2. If an inplenmentation does provide C linkage, the string-litera
in the |inkage-specification shall be spelled "C', and the
semantic rules specified in 7.5 nust be observed.

Still being considered.
The conmittee is still discussing howto clarify subclause 7.5
[dcl.link].

C Li nkage (Library)

| mpl enent ati ons can | eave out Standard C Library conmponents that
have fully-functional C++ replacenents: stdio.h and | ocale.h

Rej ected, breaks C conpatibility.

Translation Linits

Rej ect ed.

The Annex B on translation limts has been considered very
carefully by the commttee and is the best conprom se that was
acceptable to the majority of conmmttee nenbers.

Li brary

Library - Is it too nuch?

-> Rej ect ed.
-> The comittee believes that the functionality provided by the library
->1is necessary in the first version of the C++ standard.

8

Excepti on Specifications

The use of exception specifications in the Library clauses is

i nconplete and inconsistent. It is too soon to tell how extensively
C++ exceptions will be used, but | believe a user would want an
iron-clad prom se about what exceptions a library function m ght
throw. Therefore, unless there is a good reason to the contrary,
every Library function (except those inherited fromC) should have
an exception specification.

-> Rej ect ed.

-> The exception specification policy for the library has been

-> discussed at length at several neetings. The current policy is the
-> one the majority of the commttee nenbers prefers.

9

Ganularity

"Granul arity" neans: do the headers contain too many or too few
decl arations? Headers that contain too many decl arations increase
conmpile times unnecessarily. But, headers that contain too few
decl arations confuse the programer, and increase the nunber of

#i ncl udes that have to be coded to produce a working program

For the nost part, | think the Cormittee got the
granularity decisions right, with the follow ng exceptions:

o <utility> This header contains two things: the comparison
operator tenplates, and the pair/nmake pair tenplates. These seem
unrelated. Al so, sone programmers may want pair, but wll not
want the library to define conparison operators on their behalf.
| would advise splitting <utility> into two headers: <pair> and
<conpari son>.

o0 <nmenory>: This header contains three things: the default
al | ocator, various raw nenory operations, and the auto _ptr
tenplate. auto_ptr does not seemto belong here (and has a broad
applicability that goes beyond the default allocator and nmenory
operations). At a bare minimm auto_ptr should be inits own

header. Splitting the default allocator into its own header would
al so be clearer.

0 <iterator>: | suspect the streamiterators will be |ess-often

used than the other iterator types. Yet, declaring the stream
iterators in the same header requires <iterator> to include <ios>
<i osfwd> and <streanbuf>. Renmpbving the streamiterators into a
new header - say, <ioiterator> will substantially inprove the
conpile tinme of many prograns.

0 <algorithnme: This header is far too large: to get one algorithm

the user is required to conpile all of them C ause 25 suggests a
natural division into: non-nodifying sequence al gorithns;

mut ati ng sequence al gorithns; sorting and searching. At |east
this much separation shoul d be provided.

-> Maj or changes in header content were rejected.

->

-> The streamiterators question is still under consideration

->

-> The <utility> conparison operators question has been resol ved
-> by placing these operators in a sub-nanmespace.

->

->

->
->
->

10 Cont ai ner Concerns

1. Hash structures should be added to the Library. | understand
the Conmittee rejected hash structures at a recent neeting-not
out of any technical deficiency, but out of a desire to Get the
Standard Qut. The reality, however, with two sound
i mpl ement ati ons w dely avail abl e by anonynous ftp, is that hash
structures are likely to be incorporated in all the comercia
STL i npl enentati ons anyway. The Committee might as well accept
this, and add themto the Standard.

Rej ect ed.
The conmittee does not wish to increase the size of the library at
this point in the standard process.

2. Container elenents need not be ordered. Table 50 ("Container
Requirenments") says that <, <=, > and >= operations nust be
defined for all objects placed into a container. This
requirenent is too strict. Odering should be required only if
the user instantiates an algorithmthat needs it.

Rej ect ed.

The conment is not correct. The requirenents in Table 50

(" Cont ai ner Requirenents") specify requirenments on the container
itself, *not* the elenments of the container

3. Valarray should neet the requirenents of a Container. | have
already stated that the valarray (and related classes) are not of
sufficient utility to belong in this Standard. But, if valarray
remains in the Standard, it should at |east neet the requirenments
of a Container, (by providing begin and end nethods, for exanple).
As it now stands, valarray looks like it came out of a different
Conmittee.

-> Rej ect ed.
-> Note that a certain anmount of cleanup of valarray has been done.

11 | ostream Concerns

The description of the input/output classes appears to be in

a state of flux. |In particular, there is a confusion about the

di vision of duties between the ios_base and basic_ios cl asses.

(I't’s bound to confuse people when the Standard contains two cl asses
with such simlar names.) Since | believe the Conmittee is aware of

the nunerous errors, | will not conmrent any farther

-> Accepted

-> The comittee believes that the division of duties between these two
-> classes has been inproved, and nmakes sense now.

-> The non tenplate class ios_base is in charge of the data, and

-> functions that does not require the charT and traits tenplate

-> paraneters. The class basic ios is in charge of the functions and
-> data, that nake use of the charT and traits tenplate paraneters

A larger concern is the elimnation of the bi-directional 1/0O
classes (e.g. iostream fstrean). These have been a part of C++

i npl ementations for many years now, renoving themindicates a

di srespect for existing code. | was especially astonished to read
(in conp.std.c++) that these classes were renoved so that

i mpl ementors woul d not be conpelled to use nultiple inheritance in
the Standard Library. |Inagine that: a Cormittee afraid of its own
| anguage!

-> Accepted
-> Bi-directional streans were reinstated in the library.

Annex D confuses nme. It is labeled "normative," but in a couple of
pl aces it says that an inplenentati on may provide certain functions.
If inplenentations are required to provide these functions, they
shoul d be described in Clause 27 with the rest of the I/Olibrary
(with deprecated features | abel ed as such). Annex D should be just
a sunmary, not the conpl ete description, of such features

-> Editorial

12 Cl ause-by-cl ause Comments

Cl ause 1.
Definitions (1.3).

o I nplenmentation-defined behavior. The text says that "the range

of possible behaviors is delineated by the standard."” In general
this is not so. The sentence should be stricken
-> Accepted

o Inplementation limts. Since the current draft prescribes no such
limts, this definition is unnecessary. (However, in ny opinion
i mpl enent ati ons shoul d be prescribed - see above.)
-> Rej ect ed.

o Multibyte character. This definition uses the terns "extended
character set" "and "basic character set,” neither of which is
def i ned.

-> Still being discussed.

o Inplementation. This word is not defined, but should be.
-> Editorial

o POD, PODS. These two terns appear frequently in the docunent,
but are not defined until a footnote on the first page of C ause
9. They should be defined here.
-> Editorial

Processor conpliance (1.7).

Thi s sub-cl ause should be called "Inplenentation Conpliance," and
the word "processor" changed to "inplenmentation" throughout.
Paragraph 4 uses the term"resource linmits," which is never defined.
Par agraph 2 uses the term "di agnosabl e errors,” which is never

defined. Paragraph 5 states that the notes, footnotes and
non- nornmative annexes are not part of the normative Standard. Wile
| agree with this, the |ast paragraph of a section called "Processor
Conpl i ance" is"not the right place to state it.

-> Editorial

Program execution (1.8).

The first paragraph uses the words "semantic descriptions," but the
docunent is not structured in such a way that "semantic
descriptions" (as opposed to other kinds of descriptions) are easily
identified. The word "processor(s)" appears several times in this
sub-cl ause. Paragraph 3 says that, in each case of unspecified
behavi or, the Standard defines a set of allowable behaviors; | am
not sure that it actually does this in every case.

-> Editorial

Cl ause 2.
Phases of translation (2.1).
This sub-cl ause contains three m suses of the word "shall"

0 "A source file that is not enpty shall end in a newline
character, which shall not be i mediately preceded by a backsl ash
character."

o0 "A source file shall not end in a partial preprocessing token or
partial "conment."

These woul d be better rewitten as:

o "If a source file does not end in a newline character, or ends
in a newline character preceded by a backslash character, the
translation unit is ill-forned."

o "If a source file ends in a partial preprocessing token or
partial comment, the translation unit is ill-forned."
-> Editorial

Preprocessi ng token (2.3).

The grammar summary at the beginning of this section nentions the
non-term nal synbol s header-nane and preprocessi ng-op-or-punc, but
never defines them (The descriptions fromthe |SO C Standard woul d
suffice.)

-> Editorial

-> "preprocessing-op-or-punc” is described in 2.9 [I|ex.key].

-> header-nane needs to be defined.

Keywords (2.8).

Paragraph 3 presents rules about identifiers, not keywords, and
shoul d be nmoved to the precedi ng sub-clause. Paragraph 4 begins a
di scussion of a new topic - preprocessing tokens - and should thus
begin a new sub-clause. Paragraph 5 presents possibly usefu
i nformati on, but seens to have been dropped in by m stake (having
nothing to do with the subject of "keywords").

-> Editorial

Character literals (2.9.2).

Par agraph 1 uses the phrase "nachine’'s character set," which is not
defined. The table of escape sequences shoul d be acconpani ed by the
nore rigorous definitions provided in Cause 5.2.2 ("Character

di splay semantics") in |1SO C

->

Still being considered.

Par agraph 4 says that an octal escape sequence consists of a
backsl ash foll owed by one or nore octal digits. 1SOCIlimts the
escape sequence to no nore than three octal digits. | can see no
justification for such a difference between the two | anguages.

-> Accepted: See 2.10.2 [lex.ccon].

Par agraph 4 al so says that "the value of a character literal is

i mpl ementation-defined if it exceeds that of the | argest [enphasis
added] char (for ordinary literals) or whar_t (for wide literals)."
Since char objects may be represented as signed quantities, the use
of the word "largest” would seemto be an error, since it fails to
consi der negative nunbers. Perhaps a better wordi ng would be
sonmething like this: "The value of a character-literal is

i mpl ementation defined if it falls outside the

i mpl emrent ati on-defined range of char objects (for ordinary literals)
or wchar_t (for wide literals)."

Editorial.

String literals (2.9.4).

The equival ent section in the 1SO C Standard is considerably nore
rigorous. Unless there is a good reason for the two to be
different, | would recommend copying the |1 SO C wording.

Editorial.

Cl ause 3.

One definition rule (3.2).

Thi s subcl ause appears to be inconplete. |In particular, there is
no definition of what the rule neans for tenplates or inline
functions.
Accepted: See 3.2 [basic.odr].

Explicit qualification (3.3.7).

The entire subclause is a non-nornmative note. Either the subcl ause
shoul d be deleted, or it should contain nornmative content.
Editori al .

El aborated type specifier (3.3.8).

The organi zation of this subclause needs to be inproved: the first
sentence exactly repeats the first sentence of the second paragraph
of 3.3.6. A note at the end of this subclause says that the scope
of class nanes introduced in el aborated-type-specifiers is described
in 7.1.5.3. The description should be noved here.

Editorial .

Poi nt of declaration (3.3.9).

Thi s subcl ause begins to discuss "point of declaration,” but ends
with a note containing forward references for enunerators, friends,
and el aborated type specifiers. The related material should be
brought into one place.

Editorial.

Mai n function (3.6.1).

The description uses the phrase "null-termnated nultibyte strings
(NTMBSs)," but this is nowhere defined
Still under consideration

A note nerely recomends
that additional arguments be added after argv. | think this should

->
->
->

be a requirenent.

Rej ect ed.

Hel p: Bill G bbons or Steve Adantzyk: | cannot renenber why we
decided to reject this.

Par agraph 3 misuses the word "shall." Here is a proposed rewording:

A programthat calls or takes the address of the main()

function, or declares it static or inline, is ill-forned.
Editorial.
Static storage duration (3.7.1).
The statenent that "the storage for these objects can last for the
entire duration of the program is poorly phrased. Wy do you say
use the word "can?" What other possibility is there? Al so, the
phrase "entire duration" is redundant.
Editorial.

Types (3.9).

In the first sentence, change "processors" to "inplenentations."
Editorial.

Type nanmes (3.9.4).

Thi s subcl ause contai ns no non-normative content. It should

be given normative content or del eted.

Editorial.

d ause 4.

This clause begins with a non-nornmative "note." | think this is

poor style. Notes should conment on what has al ready been said, and
therefore should not appear at the begi nning of a clause, where
not hi ng has yet been said.

Editorial.

Cl ause 5.

Footnote 36 says that "the left operand of += shall not have type

bool. This appears to be a normative requirenment, so why is it
buried in a footnote?
Editorial .

Par agraph 7 says, "A reference can be thought of as a nanme of an
object." This appears to be a non-normative conment, and shoul d be
a "note."

Editorial.

Par agraph 10 contains the words, standard conversion are applied.
Pluralize "conversion" or change "are" to "is."
Editorial.

I n Paragraph 12, change "processor” to "inplenentation."
Editorial .

Primary expressions (5.1).

Par agraph 6 says that "A id-expression is a restricted formof a
pri mary-expression that can appear after . and -> (5.2.4)." This is

m sl eading -- an id-expression can appear in nany other contexts, as
well. Also, the sentence should begin with "An," not "A"
Editorial.

Function call (5.2.2).

The note in paragraph 8 is anbiguous. It refers to "the rules
above," but there are so nany rules that it is difficult to infer
what rul es are neant.

-> Editorial

Cl ass nenber access (5.2.4).

Par agraphs 3 and 4 both use the term"context in which the entire
post fi x-expression occurs." The word "context" is used in this way
t hr oughout the docunent, but is never defined. A note in Paragraph
3 uses the word "injection" as if the reader will know what
is meant. However, this appears to be its first appearance, and
don’t recall seeing a definition.

-> Still being considered.

-> The content of paragraph 3 and 4 is still being worked on by the

-> comittee. Some of the content will be noved to the subcl ause

-> 3.4.4 [basic.lookup.classref] and expanded to describe the nane

-> look up rules in nore details.

I ncrenent and decrenment (5.2.5).

A non-normative note says that incrementing an object of type boo

is deprecated. This should be a normative statenment, and a |ist

of all such deprecated behaviors should be provided in an Annex.
-> Editorial

Delete (5.3.5).

In the syntax for del ete-expression, delete, [and] are separated
by spaces, suggesting that they are distinct tokens, but C ause 2
says that delete [] is a single token

-> Rej ect ed.

-> Clause 2 was in error (and has been corrected). delete, [and] are

-> separated tokens.

Rel ati onal operators (5.9).

Thi s subcl ause begins with a non-nornative note, which is
poor style. Also, the statenent in the note that the relationa
operators group left-to-right seens to be inportant, and perhaps
doesn’t belong in a "note" at all

-> Editorial

The | ast dash under paragraph 2 says that "Qther pointer

comparisons are inplenentation-defined." Do we really want to force

i npl ementations to define such? Perhaps this should be "undefined."
-> The conmittee voted to have these conversions be "unspecified"

C ause 7.

Par agraph 7 says:
Only in function-definitions (8.4) and in function declarations
for constructors, destructors, and type conversions can the
decl -specifier-seq be omtted.

However, Annex C says that "inmplicit int" declarations are no

| onger pernitted. So, it would seemthat the words "in

function-definitions (8.4) and" should be stricken

-> Editorial
Function specifiers (7.1.2).

Paragraph 3 nentions that inline functions "shall have exactly the
same definition in every case." This should be nmade nore precise.

->

->
->

->
->
->
->

Does "exactly the same"” nean token equival ence or source
equi val ence? (Think of it this way: we know that inplenentations
are not required to diagnose violations of the one-definition rule,
and nost do not. But, if an inplenentation wanted to di agnose

viol ations, exactly what would they be required to check?)
Accepted: See 3.2 [basic.odr] for a definition of the ODR

Nanespace scope (7.3.1.3).
Paragraph 3 says that "The use of the static keyword is deprecated

when decl aring objects in a namespace scope." This statement bel ongs
with a list of deprecated features in an Annex.

Editorial.

However, | disagree
with deprecating this feature. This use of static has been around
for years and does no particular harm Leave it al one.

Rej ect ed.

This was a deliberate decision. Al of the functionality of
file-scope statics could be gotten with nanespaces, so there was
really no reason to use file-scope static anynore.

The using declaration (7.3.3).

In the exanple after paragraph 4, the first coment should read:
"/I/OK Bis a base of D2"

Edi tori al
Paragraph 7 says that "a using-declaration is a declaration and can
therefore be used repeatedly where (and only where) multiple
declarations are allowed." The"foll owi ng exanple is provided (anong
ot hers):
void f()
. .
using A :i;
using A :i; // error: double declaration
}
I think that this double declaration should be well-forned,
considering that the following is well-forned:
void g()
{
extern int j;
extern int j; // fine: redundant extern declaration
}
Rej ect ed
A using declaration is not an extern declaration. It introduces the

nane into the current scope in the same way that an ordinary
bl ock scope declaration introduces a nane. |In these cases,
redeclarations are ill-forned.

Paragraph 16 says that use of access-declarations is deprecated.
This should join the list of deprecated features in an Annex.
Editori al

C ause 8.

Ref erences (8. 3.2).

In the exanple follow ng paragraph 2, the third and fourth lines
appear to be indented by m stake.

Editorial .

d ause 9.

Cl ass nmenbers (9. 2).

Par agraph 11 says, "The order of allocation of nonstatic nenbers
separated by an access-specifier is inplenmentation-defined." Do we
really want to force inplenmentations to docunment this? It seens to
me the order of allocation should be "unspecified."

-> Accept ed.

Al so, the non-normative "note" at the end of paragraph 11 seens out
of place; it has nothing to do with the subject of the paragraph
-> Editorial

Scope rules for classes (9.3).

In 2), the last letter ‘S should be in a constant-w dth font.

This rule states that: "A nane N used in a class S shall refer to
the sane declaration when re-evaluated in its context and in the
compl eted scope of S." Line 3) says that: "If reordering nmenber
declarations in a class yields an alternate valid programunder (1)
and (2), the program s behavior is undefined." However, the exanples
gi ven on the next page describe violations of this rule as an
"error" (which suggests that the exanples are ill-forned).

Therefore, the text should be changed in one of two ways:

1. In (3), "the progranis behavior is undefined" should be changed
to "the programis ill-forned."
[You could al so add that "no diagnostic is required," if this
woul d make the inplenmentors nore confortable.]

or,

2. In the exanmples, occurrences of the word "error" should be
changed to "undefined behavior."
-> Editorial
-> Option 1. describes the intended behavior.

Static nenber functions (9.5.1).
Thi s subcl ause begins with a non-nornative note, which is poor

style.
-> Editori al

Uni ons (9.6).
The restriction that "a union can have no static nenbers" is

gratuitous. Wy this restriction?
-> Rejected, request for an extension

Bit fields (9.7).

The following statenents nmade in this sub-clause appear to
be non-normative and shoul d be presented as "notes":

‘Fields straddl e allocation units on some nachi nes and not on others.

"Fields are assigned right-to-left on sone nmachines, left-to-right
on others."

"An unnaned bit-field is useful for padding to conformto
external | y-i nposed | ayouts."

-> Editorial
C ause 10.

Menber nane | ookup (10.2).

->

->

->

->
->

->
->

Par agraph 2 uses the word "we" two tines. Since the rest of the
docunent does not speak in the first person plural, the paragraph
shoul d be reworded.

Editorial.

Cl ause 11

Access specifiers (11.1).

Paragraph 2 says that "the order of allocation of data nmenbers with
separate access-specifiers is inplenentation-defined." | believe it
shoul d be "unspecified."”
Accept ed.

Protected nmenber access (11.5).

The exanple in this subclause uses the word "illegal" severa

times. It should be changed to "ill-formed."

Editorial.

Cl ause 12.

This clause begins with a non-normative note, which is poor style.
Nor mati ve text should be capable of standing alone. That is, if all
the notes were deleted, the remmining text should still be
meaningful. In this case, the first normative sentence in the

cl ause says: "These nenber functions obey the usual access rules."
Since it begins with the word "these," the sentence is reliant on
the preceding note for context.

Editorial.

A footnote at the bottomof the first page of this clause says,

"Vol atil e semantics might or mght not be used." This is
unacceptable. The Standard needs to specify what volatile semantics
mean and when they are to be used.
Accept ed.

Vol atil e semantics is never used in constructor

Tenporary objects (12.2).

The word "processor" occurs twice in this subclause. It should be
changed to "inpl enentation.”

Editorial .

Conversion functions (12.3.2).

The exanpl e after paragraph 7 uses the word "illegal." It should
be changed to "ill-forned."

Editorial .

Destructors (12.4).

Change the followi ng sentence: "It is not possible to take the
address of a destructor™ to "The address of a destructor shall not
be taken." (This parallels the wording used in the subcl ause on
constructors.)

Editorial.

The footnote that "volatile semantics might or m ght not be used"
is, again, unacceptable.
Accept ed.

Vol atile semantics is never used in destructor.

Free store (12.5).

->

In paragraph 3, change "will" to "shall."

Editorial .

Initializing bases and nmenbers (12.6.2).

Just before paragraph 4, there is a paragraph containing two notes
("if class X has a nenber mof class type..."). It is unclear why
these two notes are non-normative. They seemto be naking inportant
points that belong in the nornmative text.

Editorial.

In the exanple after paragraph 7, the declaration of B s default
constructor needs to be indented.

Editorial .

Copyi ng cl ass objects (12.8).

In the exanple that follows paragraph 15, the last line of code
before the term nating brace needs to be indented.

Editorial .

C ause 13.
Function call syntax (13.3.1.1).

I n paragraph 2, change "first two cases" to "first and third cases.”
Editorial.

Over |l oaded operators (13.5).

I n paragraph 8, change the word "section"” to "subcl ause.”
Editorial .

Built-in operators (13.6).

I n paragraph 3, change the word "section" to "subclause."”
Editorial.

C ause 14.
Poi nt of instantiation (14.3.2).

I n paragraph 11, change "inpl enentati on quantity” to
"i mpl enent ati on-defined quantity."

Editorial .

Explicit instantiation (14.4).

I n paragraph 2, change "unqualifier-id" to "unqualified-id"
Editorial .

Tenpl ate paraneters (14.7).

Par agraph 6 says that a tenpl ate-paranmeter shall not be of floating
type. The exanpl e indicates, however, that a reference to a
floating type is pernmitted. This is inconprehensible, since
floating types and floating references allow the sanme set of val ues.
| am aware of the rounding problenms that afflict floating point

val ues; however, values targeted by a reference may have the sane
probl em - hence, ny confusion about why this is all owed.
Rej ect ed.

-> There is a difference between a reference argunent (address is used)
-> and an rval ue argunent (value is used).

Tenpl ate argunents (14.8).

->

->
->
->
->

->
->

->

The lead-in to the exanple says: "Arrays as defined in 14 can be
used like this." It is not clear where in "14" the text is referring
to.

Editorial.

Tenpl at e argunent deduction (14.10.2).

In the exanple after paragraph 11, an argunent of "aa" is deduced
to be of type char*. | think this is wong and potentially unsafe,
since the effect of nodifying a character literal is undefined and
often harnful. Rather, the type deduced froma string litera
shoul d be const char*, so that if the generated function attenpts
to nodify the string, the conpiler can detect an error

Rej ect ed.
This would break C conpatibility and C++ code too nuch.

(For exanple, function overload resolution would resol ve
differently).

Overl oad resolution (14.10.3).

The text says: ‘For each function tenplate, if the argunent
deduction succeeds, the deduced tenplate argunents are used to
generate a single tenplate function, which is added to the candidate
functions set to be used in overload resolution.” This seens
incorrect. A tenplate function should be generated only after it is
sel ected by overl oaded resol ution.
Editorial.
For the purpose of function overload resolution, only the tenplate
function declaration is generated.

An exanple at the end of this subclause shows, once again, a type
of char* being deduced froma string literal. | believe it should
be const char*.

Rej ected, see 14.10.2 above.

Overl oadi ng and |inkage (14.10.4).

In the exanple, the notation f_PT pi is used in a conment, which
assunes the reader is famliar with the Cfront nanme-nangling schene.
Editorial.

Cl ause 15.

Constructors and destructors (15.2).

Paragraph 2 contains the sentence: "If the object or array was

all ocated in a new expression, the storage occupi ed by that object
is sonetinmes deleted also."™ Such a statenment is too wi shy-washy for
a standard.

Editorial .

Handl i ng an exception (15.3).

Par agraph 13 says: "The exception being handl ed shall be rethrown

if control reaches the end of a handler of the function-try-block of
a constructor or destructor". This statenment is anmbiguous. It
coul d nean one of two things:

If control reaches the end of a function-try-block of a constructor
or destructor, the programshall behave as if the progranmrer
explicitly coded a throw expression (with no argunent) as the | ast
statenment in the bl ock

or

->
->

->
->

->
->
->

->

->

If control reaches the end of a function-try-block w thout the
exception being rethrown, the programis ill-forned.

Editorial .

The intended neaning is the one described in option 1.

A simlar anbiguity afflicts the next sentence: "Qherw se, "the
function shall return when control reaches the end of a handler for
the function-try-block."

Editorial.

Exception specifications (15.4).

Par agraph 4 says, "In other assignnents or initializations,
exception-specifications shall match exactly.” It is not clear
what "other" assignnents or initializations the statenent refers
to.

Still being considered.

The term nate() function (15.5.1).

The fourth dash refers to the concept of "stack unwi nding," but
this was defined only in a non-nornmative note. Either the
definition should be made normative, or the sentence should be

r ewor ded.

Editorial.

Li brary d auses

Tenmporary buffers (20.4.3.5).

The prototype of return_tenporary buffer indicates a return type
of void, but the description says that it "returns the buffer to
which p points."”

Editorial.
The return type of void is correct. The description will be clarified.

Tenpl ate class auto_ptr (20.4.5)

This class should have a conversion operator to bool, so that
programers can use an auto_ptr instance in an if statenent w thout
having to code if (p.get())

Rej ect ed.

Not e, however, that as a result of many conments including this one,
auto_ptr has been nuch corrected and inproved.

String classes (21.1).

Paragraph 1 (on page 21-3) uses the word "we." The paragraph should
be rephrased.

Editorial .

C type virtual functions (22.2.1.1.2).

The description of do_tolower says that it "converts a character or
characters to upper case.

Edi tori al

Sequences (23.1.1).

Paragraph 1 says that "the library provides three basic kinds of
sequence containers: vector, list, and deque.” It should read "four
basi ¢ kinds," and bitset should be added to the Iist.

-> Editorial

Iterator tags (24.1.6).

Par agraph 5 di scusses the inplications of an inplenmentation
providing an "additional pointer type far." However, such an

i mpl ement ati on woul d be non-conform ng, since inplenentations are
not permtted to intrude on the user identifier nane space. The
probl em woul d be solved by using the word _ far instead of far

-> Accepted
-> Section 24.1.6 has been updated to use _ far rather than far

conmpl ex specializations (26.2.2).

The conpl ex<fl oat > speci ali zati on provides explicit converting
constructors from conpl ex<doubl e> and conpl ex<l ong doubl e>, and the
compl ex<doubl e> speci al i zati on provides an explicit converting
constructor from conpl ex<l ong double> Al of these constructors

i nvoke "narrow ng" conversions and could result in undefined
behavior if the source value falls outside the representable range
of the destination type. Al though we cannot prevent progranmers
fromindul ging in unsafe conversions, | do not think the Library
shoul d encourage them These constructors should be deleted from
the conplex interface. (The user who wants to |ive dangerously
could al ways achieve the sane result through explicit casting of the
real and imaginary parts of the source value.)

-> Rej ect ed.

->

"explicit" means _non-converting_ not _converting . There is no

-> such thing as an "explicit converting" constructor

->
->
->
->

St andard i ostream objects (27.3).

The Conmittee has adopted win as the w de-stream equival ent of cin.
| fear this name is too likely to conflict with identifier names in
exi sting code. For exanple, consider

enum gane_result (win, lose);

I woul d recormend renaning the standard wi de character streans to:
wei n, wcout, wcerr, wclog.

Accept ed.

The standard wi de character streans have been renaned to:

wein, wcout, wcerr, wclog.

See section 27.3.2 [lib.w de.stream obj ect s]

Class ios_base::Init(27.4.3.1.6).

| fail to see why the Init class is part of the nornative Standard.

It is an inplenentation detail -and hence, belongs in the real mof
the inplenentor, not in the Standard.

Still being considered.

Annex A

Tenpl ates (A 12).

The non-term nal synbols explicit-instantiation and specialization
are introduced, but these occur nowhere else in the grammar. (If

you fed the grammar to yacc in this form yacc would conplain that
these synbols are never used.) They should be integrated into the

gramar properly.

-> Editori al

Annex B.

The inplenmentation quantities |listed are a superset of the
translation linmts in 1SO C with one exception: 1SO C has: "31
nesting | evel s of parenthesized declarators within a ful
expression." For conpleteness, this should be added to Annex B
Rej ect ed.

->
->
->

The Annex B on translation Iimts has been considered very
carefully by the comrittee and is the best conprom se that was
acceptable to the majority of conmmttee nenbers.

The second-to-last itemon page Bl refers to the non-termnina
synmbol struct-declaration-list, but there is no such synbol in the
gramar .

-> Editorial

Annex C.

Par agraph uses the term"C assic C " but this is never defined.
The sane paragraph uses the first-person plural "we." It should be
rewor ded.

-> Editorial

C++ and 1SO C (C. 2).

The troff spacing macros in this section need to be adjusted; too
much space appears between the sub-clause nunbers and the
descriptions of each change.

-> Editori al

diff.stat (C. 2.4).

In paragraph 1, the rationale says that "any use of the
uninitialized object could be a disaster." In a docunent intended
for international distribution, a word like "disaster" should not be
used in a colloquial sense. Reword the sentence.

In paragraph 2, the word "processor” is used twice. Change it to
"inmpl enentation.”

-> Editorial

diff.decl (C. 2.6).

In paragraph 1, the code in the exanple does not |ine up properly.
In "Effect on original feature," the text says: "This feature was
mar ked as ‘obsol escent’ in C." Change "C' to "ISOC."

In paragraph 2, the rationale section uses the word "legal ."
Change it to "well-forned.”

In paragraph 4, the rational e section uses the words
"maj or catastrophe.” This is too colloquial for an internationa
st andar d.

-> Editori al

Anachronisnms (C. 3)

| fail to see why the Standard is allowi ng inplenentations |icense
to support so many anachronisns. Sonme of the anachroni sns descri bed
(e.g. the overload keyword, assignment to this) are very old
features that have not been a part of C++ for many years. You are
giving inplenentations license to use an old style preprocessor: not
even |SO C allowed that, and SO Cis already five years old.

I would elininate the anachroni sns altogether

-> Rej ect ed:
-> It is not required that a conform ng i npl ementati on support these
-> features.

8- Comment from Stan Friesen

Recei ved by email
emai | address: swf @l segundoca. attgis.com

8.1 Section 1.7
paragraph 2 has a typographical error, the phrase "di agnosabl e
error" is repeated twice, and there is incorrect punctuation

-> Editorial.

8.2 Section 3.6.2

paragraph 1: | find this paragraph confusing. To ne it appears as
if the statenent that objects "initializated with constant
expressions are initialized before any dynamc ... initialization

takes place" is in conflict with the statenent that within a
translation unit, "the order of inititialization of non-Iloca
objects ... is the order in which their definition appears".

-> HEditorial.
-> The second sentence applies only to objects dynamically
-> initialized.

8.3 Section 3.9
The term"POD" is used before it is defined. At the very least a
forward reference to the definition should be placed at the first
such use

-> Editorial.

8.4 Section 14.8
paragraph 2: In the exanple, the last itemseens to violate the
first sentence of the paragraph, in that 'p° doesn’t look like a
constant expression to ne. | would think that 'p’ needs to be
declared as "char * const" to nake it a constant.

-> Editorial.

-> 'p’ is the address of an object with external |inkage.

-> It is therefore ok to use "p’ to initialize a tenplate non-type
-> paraneter that is a pointer

8.5 Section 16.8
paragraph 1: | think an additional nmacro that is conparable to
__STDC__in that it is unique to supposedly standard conforni ng
i npl ement ati ons. There are enough new features and changes t hat
programmers may want to be able to #ifdef on ANSI conformance.
cannot see any way to do that with the set of macros you define
here. [Most existing inplenentations already define _ cplusplus, so
it cannot be used in this way].

-> Accept ed.

-> cplusplus can be used in this way;

-> it is now defined to be a specific long integral value, intended to
-> represent the expected date of the official standard, currently

-> 199711L.

8.6 Section 20.4.5
(auto_ptr): In the description of operator=(), the line in the
ef fects paragraph that says "copies the argunent a to *this" is
ef fectively redundant, since the reset() call nentioned in the next
Iine acconplishes exactly that. | found this confusing when | was
i mpl ementing this class.

-> Editorial.

8.7 Section 20.4.5
Al so, neither release() nor reset() have a "Returns:

par agr aph

-> Editorial.

9- Comment from Ronal d Fi sher
Recei ved by enail
emai | address: ronald.fischer@cmorg

9.1 struct vs. class

9 par. 4 says
"A structure is a class declared with the cl ass-key ’struct
struct A, // a forward declaration
class A {public: int i; }
is Acalled a structure structure or a class?

-> Editorial.
-> Replace "declared" by "defined" in the sentence above.

9.2 Local variables and the scope for function prototype

3.3.2 says:
"I'n a function declaration, nanes of parameters have function
pr ot ot ype scope"

8.3.6 par. 7 says:
"Local variables shall not be used in default expressions"
Consi der the foll ow ng exanpl es:
/'l exanple 1
int x;
void f(int x, int y =x);
Is the default argument for y the global x or the first paraneter
xX?

-> Editorial.

-> It is the parameter x.

-> The WP should say that a paraneter is a |local variable.

-> This neans that the exanple above is ill-forned because a | oca
-> wvariable is used as a default argunent.

Now | et’ s change the exanple slightly:

/'l exanple 2

int vy;

void f(int x =y, int y = 0);
Is this valid? W know that the scope of the paraneter y ends at the
end of the function prototype, but where does it begin?

-> Aready clear
-> See 3.3 [basic.scope].
-> The scope of a nanme starts as soon as it has been decl ared.

9. 3 base-cl ause of a cl ass

9 par. 2 says
"The name of a class can be used as a class-nanme even within the
base-cl ause of the class-specifier itself"
To ne, this inplies that
class A: A{...};
woul d be legal, which is certainly not what was intended.

-> Editorial.

-> The footnote was rewitten to indicate that even if a class nane is
-> previously hidden by the nane of an object, function or enunerator
-> the class nane is found when used in a base-cl ause.

9.4 Position of cv-qualifiers in dec-specifier-seq

From the grammar follows clearly, that the cv-qualifier may appear

either before or after the sinple-type-specifier, i.e. that
const int i = O;

and
int const i =0

are equivalent. Al exanples use however the first form |
suggest that, to enphasize that point, a few exanples are witten
the other style (const after int) to clarify the point.

-> Editorial.
9.5 static array nenbers (9.5.2))

One anomaly in C++ is the difference between the declaration of
static array nenbers and arrays which are not nenbers at all. The
|atter can be defined by inplicitly define the nunber of elenents:

int ia[] = {5,3,4}; // has 3 elenents
For static nmenbers, this is not possible:

struct S {
static ia[3]; // nunmber of menbers nust be stated explicitly
b

int S::ia[] = {5, 4, 3};

-> Already all owed.
-> See 9.4.2[class.static.data] para 2

9.6 Conversion to void

12. 3.2 par. 1 says:
"If conversion-type-idis 'void ..., the programis ill-fornmed"

It seems to me an unnecessary restriction to exclude user-defined
conversions to void, because it is well-defined, when voiding
happens.

-> The | anguage has been rel axed to all ow declarations of user-defined
-> operator void. See 12.3.2 [class.conv.fct]

10- Second conment from Stan Friesen
Recei ved by enai
emai | address: swf @l segundoca. attgis.com
Was comment T11 in the post-Mnterey nailing docunent.

In 20.4.5.1 & 20.4.5.2: | see a possible problemwi th the
specification of either the assignnment operator or the reset() nenber
function. Shouldn’t one or the other specify that the object pointed
to by the previous pointer is del eted?

As it stands it |looks as if an assignnent of an auto_ptr<> would
or phan any object owned by the auto_ptr<> assigned to.

-> Rejected.
-> Note, however, that as a result of many conments including this one,
-> auto_ptr has been nuch corrected and i nproved.

11 & 13 - Comment from Jay Zipnick /
Intelligent Resources |Integrated Systens
Recei ved by enail
emai | address: jzipnick@est.com
Was comment T13 in the post-Mnterey nailing docunent.

11.1 (Revision 1)
| SSUE 1) Arrays of inconplete types as fornal argunents:

As per 8.3.4, Arrays, paragraph 1, "In a declaration T D where D
has the form"Dl [const-expr(opt) 1" T shall not be a
ref erence type, an inconplete type, "

struct foo;

void f1(int* arr); /1 1egal
void f2(int arr[]); /1 1egal
void f3(foo* arr); /1 |egal
void f4(foo arr[]); /1 not |ega
The bottomline, is that "void f4(foo arr[]);", above, is illega

because foo is inconplete. However | would like the comrittee to
consider allowi ng this.

-> Accepted

11.2 (Revision 1)
| SSUE 2) Function pointers and C |inkage

Ori gi nal code:
class foo

/] details omitted
static int conpare(void* keyl, void* key2);
b

tree = tavl _init(foo::conpare); /1 pass function pointer

The problemis that class foo's inplenentation uses a Clibrary
(for handling threaded AVL trees), and this Clibrary needs to be
passed function pointers. The seventh conpiler has different
calling conventions for C and C++. Seeking a *portable* solution
the follow ng change was suggested by the conpiler vendor

class foo

/1 details omtted
static int _cdecl conpare(void* keyl, void* key2);
|
i}ée = tavl _init(foo::conpare); /1 pass function pointer

The problemhere is that _cdecl is not part of the C++ standard.

-> Still under consideration

12- Comment from Noel Yap
Recei ved by enail
emai | address: nyap@ar ban. com
Was conment T15 in the post-Mnterey mailing docunent.

T12. 1
1. friend granularity
One often wishes to grant a class, C0, or a function, fO,
perm ssion to change the value of a nenber, ni, of another class,
Cl. Usually, either a public set function is witten (which grants
gl obal change pernission), or Cl declares CO or fO as a friend
(which grants to CO or fO conplete access to Cl). Since neither of
these two choices is near optimal, | propose that nenber functions
shoul d be able to declare their friends:

voi d
Cl::set_ml(int i)

{
friend CO;
friend fO(void);
m = i;

}

-> Rejected.

-> This is not a very useful feature

-> The friend declaration would be provided in the nmenber function

-> body and (except for inline nmenber functions) the body is visible in
-> one translation unit only.

T12.2
2. enum conver si on overriding
If conversion functions fromone type, CO, to an enumtype, El, were
al | oned, bool could then be inplenmented as an enum

enum bool { false, true };

bool : : bool (int i)

/1 or, bool bool (int i)
/1 or, operator bool (int i)
return (('i) ? false : true);

-> Rejected.
-> Request for an extension

14 & 16- Comment from David Sachs / Fermilab
(al so unregistered comrent U5)
Recei ved by email
emai | address: sachs@nal . fnal.gov
Was conment T16 in the post-Mnterey nmailing docunent.

T14.1
I) [class.m] Section 10.1

Al'l the exanples in this section show only the case where all
copies of a duplicated base class are indirect. The only

di scussion of the structurally sinpler but lexically nore conplex
case, in which there is a direct copy and 1 or nore indirect
copies, that | could find was in section 12.6.2 [class.base.init],
and the | anguage there clearly affirmed the legality of a class so
desi gned.

In view of the clear legality of a class with distinct direct and
i ndirect copies of the same base class, the C++ standard needs to
speci fy proper syntax for:

a) referring to nenbers of the distinct bases

b) casting a pointer (or reference) to an object of a derived
class to a pointer (or reference) of each one of the distinct
base cl ass subobj ects.

-> Editorial.
-> Wirds were added to the WP to indicate that a class with one direct
-> base of type A and one indirect base of type Ais well-forned.

T14.2
Il1) [class.base.init] Section 12.6.2

There is no discussion of the case of a neminitializer that
specifies a nane denoting both a nonstatic data nenber and a direct
or virtual base class. Declaring such an initialize to be ill forned
woul d be a reasonabl e resol ution

-> HEditorial.

-> The nanes in the expression-list of a meminitializer are first

-> evaluated in the scope of the constructor’s class and then

-> evaluated in the first enclosing nanespace scope that contains the
-> constructor definition

-> In the case nmentioned above, nane | ook up finds the nenber name

-> first.

T14.3
I1l1) [class.base.init] Section 12.6.2

When are paraneters of meminitializers eval uated?

Language in this section clearly hints that the intent of the
standards conmittee is that each neminitializer should be treated as
a conplete expression with its paraneters evaluated after al

previous initialization. However, such a requirenent is NOT stated
explicitly.

This leaves in |inbo code |ike

class x{
int a;
int b;
x(int i) : a(i), b(a) {...}

-> Accepted
-> See 12.6.2 [class.base.init] end of paragraph 3.

T14. 4
I'V) [class.copy] section 12.8

The requirenent that a constructor for a class X of the form
X(vol atile X& or X(const volatile X& is NOT a copy constructor
and the simlar requirement for operator= should be EMPHASI ZED
rather than rel egated to an appendi x.

-> Accepted
-> See 12.8 [class.ctor] for a description of how volatile affects
-> copy constructors and copy assi gnnent operators.

15- Comment from Mok- Kong Shen
Recei ved by enail
emai | address: Mk-Kong. Shen@r z- ruenchen. de
Was comment T17 in the post-Mnterey nailing docunent.

Subject: Miltidinensional Arrays (8.3.4)

Abstract: The C++ multidi mensional arrays are inferior to those of
e.g. Fortran and thus need to be inproved for the | anguage to gain

wi der acceptance in the fields of engineering and scientific
nunerical conputations hithertofore absolutely doninated by Fortran.
It is suggested that a new data type be added to the C++ standard for
t hat purpose.

-> Rej ect ed.
-> Request for an extension

17- Comment from David O sen
Recei ved by enail
emai | address: ol sen@rati onal . COM
Was comment T19 in the post-Mnterey nailing docunent.
17.1
Section 2.8 [l ex.key], paragraph 4 lists new], delete[], new%s&,
and del et e<%®% as tokens. new%% and del ete<%% are not nentioned
anywhere el se in the document that | can find. They should be
listed in Section 2.4 [lex.digraph] as alternate representations for
new] and del ete[] respectively.
-> Accepted
-> new], delete[], new<®%%, and del ete<%% are not tokens.
-> The draft was nodified to reflect this.
-> See sections: 2.3[|ex.pp.token], 2.4[lex.digraph], 2.5[Iex.token]
17.2
Section 5.3.5 [expr.delete], paragraph 1 contains the follow ng
syntax for a del et e- expression
del et e- expr essi on:
::opt del ete cast-expression
::opt delete [] cast-expression
One nore possibility should be added.
::opt delete[] cast-expression
If a program does not contain any whitespace between the word delete
and the pair of brackets, then the conpiler nust interpret it as a
single delete[] token, not as three separate tokens (delete, [, and
]). But the delete[] token is not part of a valid del ete-expression
resulting in a syntax error.
-> Accepted
-> new], delete[], new<%%, and del ete<%% are not tokens.
-> The draft was nodified to reflect this.
-> See sections: 2.3[|ex.pp.token], 2.4[lex.digraph], 2.5[Iex.token]
17.3
I have some concerns about the exanple in Section 9.8 [class.nest],
paragraph 1. The relevent parts are quoted here:
int x;
cl ass encl ose {
publi c:
int x;
class inner {
void g(enclose* p, int i)
p->x =i; [/ ok: assign to enclose::x
}
b
|
I would like to argue that the line "p->x =i;" is an error because
the class enclose is incomplete, but |I can find no clear statenent
of exactly when a cl ass becomes conpl ete.
-> Editorial.
-> It is well-fornmed. The body of nmenber functions of a nested
-> class are |ooked up in the scope of the class assumi ng the conplete
-> definition of the class (and the conplete definition of the class
-> enclosing classes) have been seen

-> See 3.3.6 [basic.scope.class].

17. 4
In Section 20.4.5.2 [lib.auto.ptr.nenbers], it is never specified
what the menber functions auto_ptr<X>::rel ease and
auto_ptr<X>::reset should return
-> Editorial

17.5
Section 24.3.1.1 [lib.reverse.bidir.iter] contains the description
of the tenplate class reverse _bidirectional _iterator. The nenber
functions base() and operator*() do not change the object on which
they are called, and should therefore be constant nenber functions.
This would affect both the class definition in 24.3.1.1 and the
descriptions of the two nenbers in 24.3.1.2.2 and 24.3.1.2. 3.

The sane argunment applies to the tenplate class reverse_iterator
and its menber functions base() and operator*() in Sections
24.3.1.3, 24.3.1.4.2, and 24.3.1.4.3.

-> Accepted

17.6
In Section 24.3.1.2.5 [lib.reverse.bidir.iter.op--], the return
val ue of reverse_bidirectional _iterator<B, T,R D>::operator--() is
not specefied. There is a Returns clause, but it is enpty.
-> Editorial
-> Returns: *this

17.7
Section 24.3.1.2.6 [lib.reverse.bidir.iter.op==] contains the
description for reverse_bidirectional _iterator<B, T, R D>::operator==.
The Returns cl ause states:

Returns: Bidirectionallterator(x) == Bidirectionallterator(y)

This assunes that there exists a conversion froma
reverse_bidirectional iterator to the Bidirectionallterator class on
which it is based. This was true in early versions of STL, but is
not the case in the current draft standard. The conversion operator
has been replaced by the nmenber function base(). Therefore, the

Ret urns cl ause shoul d be changed to either

Returns: x.current == y.current
or:
Returns: x.base() == y. base()

bot h of which are equival ent.
-> Accepted
-> See 24.3.1.2.7 [lib.reverse.bidir.iter.op==

17.8
Section 24.3.1.3 [lib.reverse.iterator] contains the description of
the tenplate class reverse_iterator. At the end of the class
definition are declarations of operator==, operator<, operator-, and
operator+. These should not be in the class definition, but should
be non-nenber functions.
-> Accepted

17.9
Section 24.3.1.4 [lib.reverse.iter.ops] does not contain any
description for many of the reverse_ iterator operators: the default
constructor for reverse_iterator; the nenber functions operator+,
operator+=, operator-, and operator-=; and the non-nenber functions
operator<, operator-, and operator +.

-> Accept ed.
-> 24.3.1.4.7 through 24.3.1.4.15 contain the descriptions.

17.10
Section 25.1.3 [lib.alg.find.end] describes the tenplate function
find_end. The conmplexity clause states:

Conplexity: At nost lastl - firstl applications of the
correspondi ng predicate.

find_end is al nost exactly like the tenplate function search
(25.1.9) except that it finds the | ast occurance rather than the
first. The conplexity of search is quadratic ((lastl - firstl) *
(last2 - first2)) rather than linear. Footnote 196 in Section
25.1.9 explains that, while a linear algorithmexists, it is slower
in nost practical cases. | don't see why the reason for naking
search quadratic should not apply to find_end as well. In ny

opi nion, the complexity clause for find_end should be changed to:

Conplexity: At nost (lastl - firstl) * (last2 - first2)
applications of the correspondi ng predicate.

-> Accepted with Conplexity:

-> (last2-first2)*(lastl-firstl-(last2-first2)+1)

17.11
Section 25.1.4 [lib.alg.find.first.of] describes the tenplate
function find first _of. | see problens with both the Returns and

Conpl exity cl auses.
The Returns cl ause st at es:

Returns: The first iterator i in the range [firstl,
lastl-(last2-first2)) such that for any non-negative integer n <
(last2-first2), the followi ng corresponding conditions hold: *i ==
*(first2+n), pred(i, first2+n) == true. Returns lastl if no such
iterator is found.

As | read this, every nenber of the range [first2, last2) nust be
equal, since the result nust conpare equal to every one of them M
guess is that it was intended for the result to conpare equal to any
one nenber of the range [first2, last2), in which case the Returns
cl ause shoul d read:

Returns: The first iterator i in the range [firstl, lastl) such

that there exists sonme non-negative integer n < (last2-first2) where
the followi ng corresponding conditions hold: *i == *(first2+n),
pred(i, first2+n) == true. Returns lastl if no such iterator is

f ound.

The Conplexity clause for find first_of states:

Conplexity: Exactly find first of(firstl, lastl, first2+n)
applications of the corresponding predicate.

But find first_of(firstl, lastl, first2+n) is not a |legal function

call, and find first_of returns an iterator, not a nunber. So the
Conpl exity clause just doesn’t nake any sense. And given that the
Returns clause didn't nmake sense either, | amnot sure what the
compl exit shoul d be.
-> Accepted
17.12

Section 25.1.9 [lib.al g.search] describes the tenplate function
search. There are four overl oaded version of the function

tenpl at e<cl ass Forwardlteratorl, class Forwardlterator2>

Forwardlteratorl
search(Forwardlteratorl firstl, Forwardlteratorl |astl,
Forwardlterator2 first2, Forwardlterator2 | ast?2);

tenpl at e<cl ass Forwardlteratorl, class Forwordlterator?2
cl ass Bi naryPredi cat e>
Forwardlteratorl
search(Forwardlteratorl firstl, Forwardlteratorl |astl,
Forwardlterator2 first2, Forwardlterator2 |ast2,
Bi naryPredi cate pred);

tenpl at e<cl ass Forwardlterator, class Size, class T>
Forwar dl t er at or
search(Forwardlterator first, Forwardlterator |ast,
Si ze count, const T& val ue);

tenpl at e<cl ass Forwardlterator, class Size, class T,
cl ass Bi naryPredi cat e>
Forwar dl t er at or
search(Forwardlterator first, Forwardlterator |ast,
Size count, T value, BinaryPredicate pred);

But there is an overload anbiguity between the first and third
versi ons and between the second and fourth versions. For exanple,
gi ven the foll ow ng code

int *f1, *l1, *f2, *|2;
/l Set f1, 11, f2, and 12 to be valid iterators
search(f1, 11, f2, 12);

The call to search could match the first version with both
Forwardlteratorl and Forwardlterator2 as (int *), or it could match
the third version with Forwardlterator, Size, and T all as (int *).
| cannot think of any case where the first or second versions would
be better matches than the third or fourth versions. Therefore,
think the third and fourth versions of search should be renaned to
somet hing different.

-> Accepted

-> The third and fourth versions were renanmed search _n .

17. 13
Section 26.2.1 [lib.conplex] contains the definition of the
tenpl ate class complex. The definition contains three different
constructors:

compl ex();
compl ex(T re);
complex(T re, Tinm;

Section 26.2.3 [lib. conpl ex. nenbers], however, only contains a
description of a single constructor with default argunents:

conplex(Tre = T(), Tim=T());

Ei ther of these sections should be changed to match the other one.
-> Editorial
-> 26.2.1 should match 26. 2. 3.

18- Comment from Don Organ / Megat est
Recei ved by email
emai | address: dorgan@regat est. com
Was conment T20 in the post-Mnterey nailing docunent.

Provide static virtual nenber functions.

-> Rej ect ed.
-> Request for an extension

19- Comment from Babak Sehari
Recei ved by enail
emai| address: sehari @ ast at e. edu
Was conment T22 in the post-Mnterey mailing docunent.

In order to make C++ programm ng | anguage nore international, the
term nal input and output functions of C++ should be able to handle
various | anguages requirement. Due to the fact that some | anguages
such as Chinese are witten fromtop to bottom and sone ot her

| anguages such as Arabic, Handi, Urdu, and Persian are witten from
right to left, a C++ Standard shoul d be able to deal with input and
output in these |anguages using all terminal functions. This can be
done using a call to overload the functions and operators, such as:

char termdir(char direction);
where direction may be defined as:

0 left toright (normal English)
1 right to left
2 top to bottom

return val ue:

0 unsuccessfu
1 successful

This call will effect behavior of functions such as printf and
scanf and overl oads operators such as << and >>

For exanple to read and wite a chinese docunent after English text
one can wite:

char | oad_chinese _fonts(); // a function to be defined by the
/'l programrer

mai n()
char answer[10], answer 2[10] ;

printf("The | anguage woul d you prefer?)"

scanf (answer);

printf("\n");

| oad_chi nese fonts();

termdir(2);

printf("chinese text");

scanf (answer 2) ; /1 now the scanf should enter the data from
/1 top to bottom

}

-> Rej ect ed.
-> Request for an extension

20- Comments from Davi d Vandevoor de
Recei ved by emil
emai | address: vandevod@s. rpi.edu
Was conment T29 in the post-Mnterey mailing docunent.

Conments on the proposed <val array> header

-> Accepted in substance at Santa Cruz neeting;
-> comenter was present during discussions.

21- Comment from WGL4
Recei ved by enail
emai | address: pjp@l auger.com
Was conment T21 in the post-Mnterey nmailing docunent.

21.1 Core
UK Comments on C++ CD for Public Review

Clause 1.1
Par agraph 2, last sentence. Delete this sentence and Annex C 1. 2.
This is the first standard for C++, what happened prior to 1985 is
not relevant to this docunent.
-> Rej ect ed.
-> The conmittee views Annex C. 1.2 as infornmative and hel pful to users.
-> 1t decided that it is worth to include it in the final standard

Clause 1.2
Par agraph 1, change "1SQO | EC 9899: 1990, C Standard" to
I SO'| EC 9899: 1990 Progranmi ng Languages -- C'

Paragraph 1, change "1SQO | EC 9899: 1990/ DAM 1, Amendnment to C
Standard"to "1SQ | EC: 1990 Progranm ng | anguages -- C AMENDMENT 1: C
Integrity"”

Add year of current publication of |1SQOIEC 2382
-> Editorial

Clause 1.3

Paragraph 1, nultibyte character. Last sentence. Wat is the basic
character set? 1Is it the basic source character set or basic
execution character set (see clause 5.2.1 of 1SO 9899)? There is

an index refence for basic execution character set to this clause.

Al so need to add definitions of the basic execution and basic source
character set. See |SO 9899, C ause 5.2.1
-> Still under discussion

Paragraph 1, undefined behaviour. |SO 9899 states that "Undefined
behavi ouris otherwise indicated in this International Standard by the
wor ds "undefi ned behavi our” or by the om ssion of any explicit
definition of behaviour".

The C++ standard should al so adopt the rule that onission of explicit
defintion of behaviour results in undefined behavi our
-> Accepted

Paragraph 1, well-forned program Qher standards use the term
Conforming to describe this concept. The C++ standard should foll ow
this precedent. It should also introduce the concept of Strict
Conformance, that is a programthat contains no undefi ned,
i mpl ement ati on defined or unspecified behaviours.
-> Rej ect ed.
-> The Confornmance nodel was di scussed extensively by the conmmittee and
-> the Confornmance nodel proposed in the draft (see 1.7,
-> [intro.conpliance]) is the best conprom se that was acceptable to the
-> majority of conmittee nmenbers

Clause 1.5, paragraph 1, second sentence. Contains a use of the
term "basi c execution character set". See previous discussion
-> Still under discussion

Clause 1.8, paragraph 4. Need to include text stating that the
standard i mposes no requirenents on the behaviour of prograns that

cont ai n undefi ned behavi our.
Accept ed.

Clause 1.8, paragraph 9, second sentence. Wat is a "needed
side-effect"? This paragraph, along with footnote 3 appears to be a
definition of the C standard "as-if" rule. This rule should be
defined as such.

Still under discussion.

Clause 2.1, phase 8, first sentence. Change "The translation units
that will forma programare conbined." to "The translation units
are conbined to forma program?"”

Editorial.

Clause 2.2, paragraph 1. Delete and replace with wording from

C standard. "All occurrences in a source file of the follow ng
sequences of three characters (called trigraph sequences) are replaced
with the corresponding single character. No other trigraph sequence
exi sts. Each ? that does not begin one of the above trigraphs listed
above is not changed."

Editorial.

Clause 2.3, paragraph 3, first sentence. Change | exi cal ly anal sysed

to

" parsed ..." To agree with wording in C standard.
Editorial.
Clause 2.3, paragraph 3, last sentence. Delete ", even if that would
cause further lexical analysis to fail". To agree with existing, clear
wordi ng in C standard.
Editorial.
Clause 2.4. This is a gratuatous difference fromthe Addendum
to the C standard with no technical merit. |t should be deleted
and replaced by the text fromthe Addendum
Rej ect ed.

There was a conmittee vote to differ fromC in this regard.

Clause 2.8, paragraph 3. Reserving identifiers containing a double

underscore is overly restrictive. Ildentifiers starting with
doubl e underscore should be reserved.
Rej ect ed.

Clause 2.9.1, paragraph 1. This is a clunsy rewite of the
description in Clause 6.1.3.2 of the C standard. Replace by the text
contained in the two paragraphs of the Description in Cause 6.1.3.2.
Editorial.

Clause 2.9.1, paragraph 2. This is a clunsy rewite of the

semantics in Cause 6.1.3.2 of the C standard. Replace by the

text contained in the two paragraphs of the Semantics in O ause 6.1.3.2.
Editorial.

Clause 2.9.2, paragraph 1, second sentence. What is "the machine’s
character set"? |Is this the basic source character set that we have
forgotten to define? Suggest that the wording from C standard,
Clause 6.1.3.4, Semantics, first paragraph be used (it contains the
i mportant concept of mapping).

Still under consideration.

Clause 2.9.2, paragraph 2. Suggest that C standard, C ause 6.1.3.4,
Senmantics, second paragraph be used as the basis of a rewite of this
par agr aph.

Editorial.

Clause 2.9.2, paragraph 3. Suggest that C standard, C ause 6.1.3.4,

->
->

->
->
->
->

Description, paragraph 2, 3, 4, and 5 be used as the basis of a
rewite of this paragraph
Editorial.

Clause 2.9.2, paragraph 4. Ditto comment on paragraph 3.
Editorial.

Clause 2.9, paragraph 1. Suggest that this be replaced by C standard
Clause 6.1.3.1, Description, paragraph 1. Qherwi se the term "nissing"
shoul d be replaced by "omitted".

Editorial.

Clause 2.9.4. Suggest that paragraph 1, 2 and 3 be repl aced by
C standard, Cause 6.1.4, all paragraphs in Description and Senmanti cs.
Editorial.

Clause 2.9.4, paragraph 4. Delete. The size of a string is

not equal to the nunber of characters it contains. The \" rule

is already covered by the text fromthe C standard. The first paragraph
bel ongs in an introductory text to the | anguage.

Editorial .

Clause 5.16, syntax rule. Change "assignnent-expression" to
"condi tional -expression” to agree with the C standard, | SO 9899
Cl ause 6.3.15

Rej ect ed.

Explicit decision for the throw expression (Nov 91).

Page 32 Para 9

This states

Types bool, char, wchar_t, and the signed and unsigned integer types
are collectively called integral types. 27) A synonymfor integra
type is integer type

I SO 9899 does not include wchar_t as a nenber of the integral types,
this should at |east be noted in Annex C, and does raise a nunber of
conpatability issues

Rej ect ed.

In C, wchar_t is a typedef for some integral type. The committee is
not aware of any strictly-conforning C program whose behavior is
altered by this change. Therefore, this is not listed in Annex C

Page 84 Para 5

The underlying type of an enuneration is an integral type, not
gratuitously larger than int

Is this neant to be a requirenent on an inplenmentation ?

if so then the requirenent should be stated positively.

i.e. an enuneration is an integral type that can represent all enunerator
values otherw se renove the not gratuitously ..

Editorial.

Yes, the requirenent is on the inplenmentation

1.7 Processor conpliance para 2
typo -di agnosabl e errors repeated
Editori al

Page 6 para 18
the word builtin needsd a hypen i.e built-in
Editori al

Par agraph 3. 3.4 Page 20
Scope

->
->

->
->

->
->
->
->

File 1
/Il First file

/'l declare i in global nanespace as per page 20 of draft
/1l and has external |inkage
int i=5;
File 2
/] Second file
static int i =10 ; // declare i in global namespace with interna
I i nkage
inty =::i ; /1 What is the value of y
/'l does :: resolve linkage to external or internal ??

void f(void)
{ o

int i =6;

int j =:i; // dobal nanespace i internal or externa
}
Editori al
The i with internal linkage in file 2 where it is referenced.
If an inplenmentation is required to accept both
int main(){}
and
int main(int argc, char * argv[]){}
Is it pernmitted to have a prototype of both forns visible ?
int main();
int main(int, char **);
If not is a disgnostic required nn this case.
Al ready resol ved.

See 3.6.1, para 2: "This function... cannot be overl oaded..."
Page 77

The following two statenments appear to contradi ct each other

The inline specifier is a hint to the inplementation that inline
substitution of the function body is to be preferred to the usua

function call inplenentation. The hint can be ignored.

The above statenment clearly indicates that inline can be ignored however
the draft goes on to state:

A function (8.3.5, 9.4, 11.4) defined within the class definition "is"
i nline.

Is an inplementation free to ignore the inline within a class definition ?
Editorial.

Inlining at the point of call is a hint.

The senmantics of inline functions as described in 7.1.2 nust al ways

be respected.

Page 45 para 7 [expr.call]

->
->

->
->

This section describes the pronotions prior to a function call and
refers to section 4.5 (integral pronotions), however section 4.5
refers to pronotion of wchar_t and bool, paragraph 7 remains silent
on wchar _t and bool |eaving a question over whether pronotion of
these takes place prior to the function call

Editorial.
Yes, pronotion of wchar t and bool al so applies.

The following are points directly relating to C

Clause 3.9, paragraph 6, last sentence. In |ISO 9899 an inconplete
type is not an object type (Cause 6.1.2.5, first paragraph).
Defining an "inconpl etel y-defined object type" is a needl ess
inconpatibility with 1SO 9899. Use another term

Al ready discussed by the C++ committee and rej ected.

Clause 3.9, paragraph 7, last sentence. 1SO 9899 allows a typedef
decl aration of an array of unknown size to be later conpleted for
a specific object (Oause 6.5.7, exanple 6). C++ should al so

all ow such a usage. Disallowing this construct is a needl ess

i nconpatibility.

Al ready discussed by the C++ comittee and rej ected.

3.6.2. The latitude with which static initialization mght occur is
probl ematic for use of the floating-point environnent, viz. the

fl oating-point exception flags and roundi ng direction nodes required
by | EC559. The sequence { clear-overflowflag, conpute,
test-overflowflag } would be defeated if the inplenmentation chose to
execute sonme overflowing static initializations between the clear and
test. The sequence { set-special -roundi ng, conpute,

restore-usual -rounding } could affect the results of static
initializations the inplenentation chose to execute between the set
and restore. In order to support the floating-point environnent,
some i npl enmentations, depending on their initialization nodel, m ght
need to insulate static initialization with say {

save- FP-envi ronment, set-default-FP-environnent,
execute-initializations, restore-FP-environnent }. A note to this

ef fect woul d be hel pful

Rej ect ed.

Conmenter is encouraged to wite a proposal that could be included

in a non-normative appendi Xx.

3.9.1, P10, Box 21. Yes, say "at l|least as nuch range and precision”. Both
are desired, and one doesn't inply the other

Editorial.

5, P4. The first sentence may not be clear. | assunme "where the

operators really are" neans the rearrangenment in question would not
change values. Better would be to disallow rearrangenent (except by

the as-if rule). "Rearrangenent" is better than "regrouping", as the
distributive law is problenatic too.
Editorial.

This sentence was noved to 1.8 [intro.execution] paragraph 16

11l 5 P12. There's no nention of license for wi de eval uation of
floating expressions, as in 3.2.1.5 of the C standard. Wde

eval uation is needed by the host of systenms based on wi de registers.
Editorial.

->
->
->

->
->
->

->

->

21.2 Library

17.3.1.1, P10, Table 15. Typo: unititialized fil
Editorial.

17.3.3.1.2, P1l. This seens to say that a header can optionally declare or
define any names it w shes. This statenent may have been taken out of
cont ext

fromthe C standard, where, | thought, the optional reserved nanes were
confined to those in the subsequent bullets.
Editorial .

17.3.3.2, Pl. Sentence is difficult to parse.
Editorial.

17.3.4.2, P1l. Footnote says masking nmacros are disallowed. Wy disallow
t hen?
Accept ed.

1117, Assunming w de expression evaluation is allowed, math functions
shoul d
be able to have return types appropriate to the inplenentation’s expression
evaluation nethod. E. g. if the mninmmevaluation format is double, then cos
shoul d have the prototypes

doubl e cos(float);

doubl e cos(doubl e);

| ong doubl e cos(l ong doubl e);
(Note this doesn’'t affect signatures.)
Rej ect ed.
The amount of effort required to nake this change is considered
too large for this late in the standards process.

17.3.4.8, P3, Box 70. | think it’s right to not require C functions to
t hrow exceptions, but why prohibit it?
Rej ect ed.

This specific point was di scussed and the wording of the WP carefully
choosen to reflect the view of the comittee.

18.2.1.1. Is tinyness_before actually useful for any progranm ng task?
Bei ng

in the interface nakes the diligent programrer worry about whether she needs
to consider it. The |EEE 754 (IEC 559) standardi zation group regarded it as
an inplenmentation option that didn't matter to the user.

Rej ect ed.

This field is required to conformto the LI A1 standard.

18.2.1.2, P23, 27. Footnote says these are equivalent to xxx_M N _EXP and
XXX_MAX_EXP, but their definitions don't inply that. Better to use the sane
wording as in the C standard.

Accept ed.

18.2.1.2, P23, 25, 27, 29. These refer to "range", which is intended to
i mply

normal i zed. "Range of nornalized floating-point nunbers", as in the C
standard, would avoid the ambiguity.
Accept ed.

18.2.1.2, P61. round_style would be nore useful if its value reflected the
current execution-tinme rounding style, which can be changed dynanically on
nost systens, including all | EC559 ones.

Rej ect ed.

No other itens in this class are dynanic.

It is considered better to retain consistency.

->
->
->

->
->
->
->
->

->
->
->
->

->
->
->

18.2.1.4, P2. Exanple is inconsistent in that is_iec559 is true but
has denormis false -- | EC559 requires denorns.
Accept ed.

19.1. The hierarchy of exceptions is confusing. (1) What are the

di fferences

bet ween domain_error, invalid argunent, and out_ of range? (2) out_of range
and range_error sound |ike the same thing but aren’t. (3) In nmathematics
(though not the C standard), domain refers to argunent val ues and range to
return val ues, but here out_of _range refers to argunent values. (4) How do
they map to the | EC559 exceptions (invalid, overflow, underflow, div-by-zero,
and i nexact)?

Editorial.

19.1. | believe (and hope) there’s not a requirenent that builtin operators
on builtin types or standard math functions throw any of these exceptions,
but

a reader mght leap to the conclusion that they do.

Editorial .

19.1 and 17.3.4.8 now seemquite clear on this point so no further action

is contenpl ated

111 26.2. The conplex library provides a subset of the capabilities one

m ght

expect frombuiltin conplex types. A description of what capabilities are
and

are not supported would be very hel pful. Wat conversions? Which anong
compl ex<i nt>, conpl ex<l ong>, conpl ex<fl oat>, and conpl ex<doubl e> have
implicit

conversions? What (m xed node) operations? Do integer and conpl ex operands
mx (e.g. conplex z * 2)? |s double complex z * 2. 0L OK? Wthout this
description the reader nust infer fromthe overloading rules. (It appears
there are no inplicit conversions fromconplex to real nor fromwder to
narrower anong conpl ex<l ong doubl e>, conpl ex<doubl e>, and conpl ex<f | oat >,

whi ch presunmably allows for automatic "pronotions" fromreal to conpl ex and

fromnarrower to wider conplex types. Saying so nuch -- whatever is correct
-- woul d be hel pful.)
Rej ect ed.

The standard is not a tutorial, and the reader should be able to

i nfer the allowabl e conversions by |ooking at the class descriptions.
It is correct that, because of the non-converting constructors,

wi deni ng but not narrowing is allowed.

111 26.2 In reviewing the conplex library I'mfurther confounded by not
bei ng

able to try it. It uses nenber tenplates, which aren’t inplenented in either
of the two conpilers | have access to. Are there enough inplementations of
this?

Rej ect ed.

There are lots of features in the library that are not yet

i mpl ement ed by nost conpilers, nenber tenplates is one of them

The standard library is meant to be used with a standard conpiler.

If a vendor’s conpiler is not standard then the vendor should wait

to rel ease the standard library or put in workarounds (i.e for

t he conpl ex conponent you coul d specialize each of the nenber

tenpl ates on float, double, and | ong double.)

26.2 (and el sewhere). The lack of rationale rmakes review nore difficult.

26.2, P1. Typo in the second divide operator
Editorial .

26.2.1. What are the requirements for type X?
Rej ect ed.
The requirenents for X are the same as for type T, you nust be able

->
->

->
->
->
->
->
->

->
->

->
->
->
->

->
->
->

->
->

to instantiate a conpl ex<X>

111 26.2.2. Conpound assignnents should be overl oaded for real operands.
This is CRITICAL for consistency with | EC559 and for efficiency (see section
2.3.6 of "Conmplex C Extensions", Chapter 6 of X3J11's TR on Nunerical C
Extensions), particularly since the binary operators are defined in terns of
t he conpound assignnents. conplex_z *= 2.0 nust not entail a conversion of
2.0 to conpl ex.

Accept ed.

The fol |l owi ng menber were added

basi c_conpl ex<T>& operator=(T);
basi c_conpl ex<T>& operat or +=(T) ;
basi c_conpl ex<T>& operator-=(T);
basi c_conpl ex<T>& operator*=(T);
basi c_conpl ex<T>* operator\=(T);
etc.

for basic_conmpl ex<fl oat >, basi c_conpl ex<doubl e>
basi ¢c_conpl ex<l ong doubl e>

26.2.2. Wy initialize re and imto 0?.

Rej ect ed.
Al'l existing conplex |ibs known of (AT&T, DEC, etc.)
will initialize the real and imagi nary parts of a conpl ex

library to O if you declare conplex c; (i.e. no args).

26.2.3. How do the default argunents like T re = T() apply to builtin types
like int?

Rej ect ed.

According to the standard, float re = float() should work and it

should initialize re to 0 (see Section 5.2.3 of the working draft)

26.2.4. The class declarations for the conpound assignnments use nenber
tenpl ates, but they don’t show up here. Likew se the conpl ex(const
compl ex<X>&) constructor is m ssing.

Editorial.

111 26.2.5. Definitions for binary operators refer to conpound assignnents,
but conpound assignnments aren’'t declared for complex<T> op=T. This is a
deficiency in the conpound assignnents (see above). Also the senantics are
wong for T op conmpl ex<T>, as they entail a conversion of T to conpl ex<T>
(see above).

Accept ed.

26.2.5. for ==, typo: |Ihsp.rea

Editorial.

26.2.5. For ==, the Returns and Notes parts are awkward.

Rej ect ed.

The conmittee doesn’t understand why this is "awkward."

26.2.5. For !=, typo in Returns part.

Editorial.

26.2.6. abs is mssing.

Editorial.

26.2.6. Can’t review the two TBS.

Editorial.

26.2.6. | believe the term"nornt' comonly refers to the square root of the
squared magni tude (i.e. abs), and not the squared magnitude. |Is a function

for the squared nagnitude needed? Note that the squared magnitude can be
computed fromabs with only deserved over/underflow, but not vise versa
Still under consideration

->
->

->
->

->

->
->

->
->

->
->
->

->
->

->

->
->

->

The Li brary WG proposed changing the name to "abs_sq" but the ful
committee didn't like it. So we're still thinking about it...

26.2.6. Typos in argunment list for polar.

Editorial.

26.2.7. | don't think atan2 should be overl oaded for conplex argunments? How
woul d it be defined?

Rej ect ed.

It would be defined as "return atan(x/y)", x being the first

arg and y being the second arg. conpl ex number division would

occur.

26.2.7. 10gl1l0(z) is easily conputed as log(z)/10g(10.0), so isn't really
necessary.

Rej ect ed

The existing C standard library has both [og and | 0gl10.

Il 26.2.7. Branch cuts and ranges need to be specified for functions. See
section 3 of "Conplex C Extensions", Chapter 6 of X3J11's TR on Nunerical C
Ext ensi ons.

Still under consideration

W will have a proposal at Stockholmfor this.

26.5. There’s no | ong double version of |dexp.
Editorial .

26.5. The float version of nodf is out of al phabetical order
Editorial.

26.5. pow doesn’'t accommodate ni xed node calls. E.g. pow(2.0f, 3.0) is
anbi guous, matching both pow(float,float) and pow(float,int). pow2.0, 3L)
i s anbi guous too. A description (clearer than the overl oadi ng

rules) would be helpful. Mybe nore overloads are desirable.
Rej ect ed.
Two reasons: nore overloads could lead to nore anbiguities and it

was felt that m xed-node arithmetic calls such as pow(double, float)
was unusual and dangerous enough that forcing the user to add casts
was acceptable. Soneone conmented "users need to be careful wth

ni xed- mode arithmetic anyway."

26.5. New overl oads make mat h functions ambi guous for integer argunents,
e.g.

atan(1) would be anbi guous. C++ would be nore restrictive than Cin this
respect. O course, nore overloads could solve the problem

Rej ect ed.

Sanme reason as above.

111 26.5. The functions in <fp.h> and <fenv.h>, specified in "Floating-Point
C Extensions", Chapter 5 of X3J11's TR on Nunerical C Extensions, support a
substantially broader spectrum of numerical programing.

Rej ect ed.
Not inportant enough to do given tinme considerations (No one in the
committe was willing to spend tinme witing a concrete proposal).

Al so, sone of this support is already in the nuneric_limts class.

17.3.1. 3:

A freestanding inplenmentati on doesn’t include <stdexcept>,
whi ch defines class exception, needed by <exception>
Shoul d probably nove cl ass exception to <exception>
Accept ed.

17.3.3. 1:
A C++ program nust be allowed to extend the namespace std if only

->
->
->

to specialize class numeric_limts.
Accept ed.

17. 3. 4. 1.
Paragraph 4 is a repeat.
Editorial .

18. 2. 1:
float_rounds_style should be float_round style (correct once).
Accept ed.

18.2.1.1:

Par agraph 2 is subsunmed by the descriptions of radix, epsilon(),
and round_error(). Should be renoved here.

Accept ed.

18.2.1.1:

Paragraph 3 is repeated as 18.2.1.2, paragraph 50, where it bel ongs.
Shoul d be renoved here.

Accept ed.

18.2.1.1:

Shoul d say that numeric_limts<T> nust be able to return T(0).
Shoul d say that round_style defaults to round_i ndeterm nate,
not round_toward_zero.

Rej ect ed.

Par agraph 4 describes the default tenplate.

The default for round _style is as in C

18.2.1. 2:

denorm mn() does *not* return the m ni mum positive normalized val ue.
Shoul d strike the nention of this function in paragraph 2.

Accept ed.

18.2.1.2:

Par agr aph 22 nust supply a nore precise definition of *‘rounding error.’

Accept ed.

18.2.1. 2:
Par agraph 23 mnust repl ace
‘“‘is a normalized value' .
Accept ed.

=3
=

is in range’

18.2.1.2:
Par agr aph 25 nust repl ace
‘‘is a normalized value'’.
Accept ed.

=3
=

is in range’

18.2.1.2:

Par agr aph 27 nust repl ace
‘“‘is afinite value' .
Accept ed.

=3
=

is in range’

18.2.1. 2:

Par agraph 29 nust replace ‘‘is in range’
‘““is a finite value .

Accept ed.

3
=

18.2.1. 2:
In paragraph 41, ‘‘flotaing’’ should be ‘‘floating’
Editorial.

18.2.1. 3:
Semantics nmust be specified for enumfloat_round_style.
Accept ed.

->
->

18.5. 1:

type_info::operator!=(const type_ info& is anbiguous

in the presence of the tenplate operators in <utility> and it is
unnecessary. It should be renoved.

Still under consideration

18.6.1. 1:

Paragraph 1 incorrectly states that bad_exception is thrown by the
i npl ementation to report a violation of an exception-specification
Such a throwis nerely a pernissible option

Editorial.

18. 7:
There are five Tabl e 28s.
Editorial .

19.1. 1:

exception(const exception& should not be declared with the
return type exception& (Error repeated in semantic description.)
Editorial .

20. 1.

Al l ocators are described in ternms of menory nodel s’’ which is an
undefi ned concept in Standard C++. The term shoul d be *defi ned* here
as the collection of related types, sizes, etc. in Table 33 that
characterize howto allocate, deallocate, and access objects of

som nanaged type

Editorial.

20. 1:

Par agraph 3 tal ks about ‘‘*anortized constant tine’’ for allocator
operations, but gives no hint about what paraneter it should be
constant with respect to.

Rej ect ed.

Cl ear enough for practical purposes.

20. 1:

a.max_size() is *not*
It is the largest valid argument to a.allocate(n).
Editorial.

20. 1:

Table 33 bears little resenblance to the currently accepted version
of class allocator (though it should, if various bugs are fixed, as
described later.) Essentially *every* itemin the ‘expression’ colum
is wong, as well as all the X : references el sewhere in the table.
Editorial.

20. 3:

binder1lst is a struct in the synopsis, a class |later
Shoul d be a class uniformy, |ike binder2nd.
Editorial.

20. 3. 5:

cl ass unary_negate cannot return anything. Should say that its
operator() returns !pred(x).

Editorial .

20.3.6. 1:

bi nder 1st: : val ue shoul d have type Qperation::first_argument_type
not argunent _type.

Editorial .

20.3.6. 3:
bi nder 2nd: : val ue shoul d have type Qperation::second_argunent _type,
not argunent_type

the | argest positive value of X :difference type.’

Editori al .

20.3.7:

‘“*Shall’’ is inappropriate in a footnote, within a comment, that
refers to multiple nenory nodel s not even recogni zed by the Standard.
Editorial.

20. 4:

return_tenporary buffer shouldn't have a second (T*) paraneter.
It’s not in STL, it was not in the proposal to add it, and

it does not hing.

Editorial .

20. 4. 1:

al | ocator::types<T> shows all typedefs as private.
They nmust be decl ared public to be usable.
Editorial.

20. 4. 1:

It is not clear from C ause 14 whether explicit tenplate nenber

cl ass specializations can be first declared outside the containing
class. Hence, class allocator::types<voi d> should probably be decl ared
i nside class allocator.

Hel p: ?7??

20. 4. 1:

The explicit specialization allocator::types<voi d> should incl ude:
t ypedef const voi d* const_pointer

It is denonstrably needed fromtine to tine.

Editorial.

20. 4. 1:

Foot note 169 shoul d read
not ‘‘In inplenmentation.’’
Editorial .

An i npl enentation,’’

20.4.1.1:

al l ocator::allocate(size type, types<U>::const pointer) has no
semantics for the second (hint) paraneter.

Editorial.

20.4.1.1:

al l ocator::allocate(size type, types<U>::const_pointer) requires
that all existing calls of the formA: :allocate(n) be rewitten

as al.allocate<value type, char>(n, 0) -- a high notationa

price to pay for rarely used flexibility. If the non-tenplate form
of class allocator is retained, an unhinted form shoul d

be supplied, so one can wite al.allocate<val ue_type>(n).

Accept ed.

20.4.1. 1:

al l ocator::allocate(size type, types<U>::const_pointer) should
return neither new T nor new T[n], both of which call the default
constructor for T one or nore tines. Note that deallocate, which
follows, calls operator delete(void *), which calls no destructors.
Shoul d say it returns operator new((size type)(n * sizeof (T))).
Accept ed.

20.4.1.1:

al l ocator:: max_size() has no semantics, and for good reason. For
all ocator<T>, it knewto return (size t)(-1) / sizeof (T) --

the | argest sensible repetition count for an array of T. But the
class is no longer a tenplate class, so there is no longer a T to
consult. Barring a general cleanup of class allocator, at the |east
max_si ze() nust be changed to a tenplate function, callable as

ei ther max_size<T>() or max_size(T *).

-> Accept ed.

20.4.1. 1:

A general cleanup of class allocator can be easily achi eved by
making it a tenplate class once again:

tenpl ate<cl ass T> class allocator {

publi c:
typedef size_t size_type;
typedef ptrdiff _t difference_type;
typedef T* poi nter;
typedef const T* const_pointer;
typedef T& ref erence;
typedef const T& const_reference;
typedef T val ue_type;

poi nter address(reference x) const;

const _pointer address(const_reference x) const;
poi nter allocate(size_type n);

voi d deal | ocat e(pointer p);

size_type init_page size() const;

size_type max_si ze() const;

The default allocator object for a container of type T would then

be allocator<T>(). Al of the capabilities added with the Nov. '94
changes would still be possible, and users could wite repl acenent
all ocators with a *nuch* cl eaner interface

Accepted with anmendnents from NO790R1 = 95-0190

20.4.1.2:

operator new(size_t N, allocator& a) can’t possibly return

a.al l ocate<char, void>(N, 0). It would attenpt to cast the
second paraneter to allocator::types<voi d>::const_pointer

which is undefined in the specialization allocator::types<voi d>
If related problens aren't fixed, the second tenplate argunent
shoul d be changed fromvoid to char, at the very |east.

Accept ed.

20.4.1. 2:
If allocator is nade a tenplate class once again, this version
of operator new becones:
t enpl at e<cl ass T>
void *operator new(size_ t, allocator<T>& a);
Accept ed.

20.4.1. 3:

The exanpl e class runtinme_allocator supplies a public nenber
al | ocate(size t) obvoously intended to nmask the eponynous
function in the base class allocator. The signature nust be
al | ocate<T, U>(size_t, types<U>::const_pointer) for that to
happen, however. The exanple illustrates how easy it is to
botch designing a replacenent for class allocator, given its
current conplex interface. (The exanple works as is with the
revised tenplate class allocator described earlier.)

Accept ed.

20. 4. 2:

raw storage iterator<Q, T>::operator*() doesn't return ‘‘a reference
to the value to which the iterator points.”’ It returns *this.
Editorial.

20.4.3.1:

Tenpl ate function allocate doesn’t say how it should ‘‘obtain a
typed pointer to an uninitialized nenory buffer of a given size.’
Shoul d say that it calls operator new(size t).

Accept ed.

20.4.3. 2:

Tenpl ate function deall ocate has no semantics. Should say that
it calls operator delete(buffer).

Accept ed.
20.4.3.5:
get _tenporary buffer fails to nake clear where it ‘‘finds the | argest
buffer not greater than ...’ Do two calls in arow ' '‘find’ the sane

buffer? Should say that the tenplate function allocates the buffer
froman unspecified pool of storage (which nmay be the standard heap).
Shoul d al so say that the function can fail to allocate any storage

at all, in which case the ‘first’ conmponent of the return value is
a null pointer.

Accept ed.

20.4.3.5:

Strike second paraneter to return_tenporary buffer, as before.
Shoul d say that a null pointer is valid and does not hi ng.

Shoul d al so say that the tenplate function renders indeterm nate
the value stored in p and makes the returned storage avail able
for future calls to get _tenporary buffer

Editorial.

20. 4. 4:

Footnote 171 tal ks about *‘‘huge pointers’’ and type ‘‘long long.’
Nei t her concept is defined in the Standard (nor should it be).
This and simlar conments desperately need rewording.

Editorial .

20.4.4. 3:
Header should be ‘‘uninitialized fill _n"’, not ‘‘uninitialized fill.’
Editorial.

20. 4. 5:

When tenpl ate class auto_ptr holds onto’'’ a pointer, is that the
same as storing its value in a nmenber object? If not, what can it
possi bly nean?

Editorial.

20. 4. 5:
auto _ptr(auto _ptr& is supposed to be a tenplate nmenber function.
Editorial.

20.4.5:
auto _ptr(auto_ptr& is supposed to be a tenplate nenber function.
Editorial.

20. 4. 5:

aut o_ptr<T>::operator= should return auto_ptr<T>& not void, according
to the accepted proposal

Editorial .

20.4.5. 1.
Need to say that auto_ptr<T>::operator= returns *this.
Editorial.

20.4.5. 2:

auto_ptr<T>::operator->() doesn't return get()->m-- there is no m
Shoul d probably say that ap->mreturns get()->m for an object ap
of class auto_ptr<T>.

Editorial.

20.4.5. 2:

auto_ptr<T>::rel ease() doesn't say what it returns. Should say
it returns the previous value of get().

Editorial.

20.4.5. 2:

auto_ptr<T>::reset(X*) doesn't say what it returns, or that it deletes
its current pointer. Should say it executes ‘‘delete get()'’ and
returns its argunent

Editorial.

20. 5:

The sunmary of <ctine> excludes the function clock() and the
types clock t and tinme_t. Is this intentional?

Editorial.

21. 1:

tenpl ate function operator+(const basic_string<T,tr,A> | hs,
const _pointer rhs) should have a second argunent of type

const T *rhs.

Accept ed.

21. 1:

Paragraph 1 begins, ‘‘In this subclause, we call...’”’ Al first person
constructs shoul d be renoved.

Editorial .

21.1.1.1:

string_char_traits::ne is hardly needed, given the nenber eq.
It should be renoved.

Rej ect ed.

21.1.1. 1.

string_char_traits::char_in is neither necessary nor sufficient.

It sinply calls is.get(), but it insists on using the basic_istream
with the default ios_traits. operator>> for basic_string still has
to call is.putback(charT) directly, to put back the delimter that
term nates the input sequence. char_in should be elimnated.

Accept ed.

21.1.1. 1:

string_char_traits::char_out isn't really necessary.

It sinply calls os.put(), but it insists on using the basic_ostream
with the default ios traits. char_out should be elim nated.

Accept ed.

21.1.1.1:
string_char_traits::is_del has no provision for specifying a |ocale,
even though isspace, which it is supposed to call, is notoriously

| ocal e dependent. is_del should be elimnated, and operator>> for
strings should stop on isspace, using the istreamlocale, as does
the null-termnated string extractor in basic_istream

Accept ed.

21.1.1. 1:

string_char _traits is mssing three inportant speed-up functions,
the generalizations of mencthr, nmenmmove, and nemset. Nearly all the
mut ator functions in basic_string can be expressed as calls to these
three primtives, to good advant age.

Accept ed.

21.1.1. 2:

No explanation is given for why the descriptions of the nenbers of
tenpl ate class string_char_traits are ‘‘default definitions.’

If it is meant to suggest that the programcan supply an explicit
speci al i zation, provided the specialization satisfies the semantics
of the class, then the text should say so (here and several other

pl aces as well).

Accept ed.

21.1.1. 2:

string_char_traits::eos should not be required to return the
result of the default constructor char_type() (when specialized).
Ei ther the specific requirenent should be rel axed or the function
shoul d be elini nated.

Accept ed.

21.1.1.2:

string_char _traits::char_in, if retained, should not be required to
return is >> a, since this skips arbitrary whitespace. The proper
return value is is.get().

Not an issue because char_in is elimnated.

21.1.1.2:
string_char _traits::is_del, if retained, needs to specify the locale
in effect when it calls isspace(a).

Not an issue because is_del is elimnated.

21.1.1.3:
Par agraph 1 doesn’t say enough about the properties of a ‘‘char-like
object.’” It should say that it doesn’t need to be constructed or
destroyed (otherwise, the primtives in string char traits are
woef ul |y i nadequate). string char traits::assign (and copy) nust
suffice either to copy or initialize a char_like elenent.

The definition should al so say that an all ocator nust have the
same definitions for the types size type, difference_type, pointer
const _pointer, reference, and const_reference as cl ass

al | ocator::types<charT> (agai n because string_char _traits has no
provi sion for funny address types).

Accept ed.

21.1.1. 4:
The copy constructor for basic_string should be replaced by two

constructors:

basi c_string(const basic_string& str);

basi c_string(const_basic_string& str, size_type pos,
size_type n = npos, Allocator& = Allocator());

The copy constructor should copy the allocator object, unless

explicitly stated otherw se.

Accept ed.

21.1.1. 4:
basi c_string(const charT*, size_type n, Allocator& should be

required to throw length error if n > max_size(). Should say:
Requires: s shall not be a null pointer
n <= max_size()
Throws: length_error if n > max_size().
No change

21.1.1. 4:
basic_string(size type n, charT, Allocator&) is required to throw

length_error if n == npos. Should say:
Requires: n <= max_size()

Throws: length error if n > nmax_size().
No change

21.1. 16:

basic_string::size() Notes says the nenber function ‘*Uses
traits::length(). There is no reason for this degree of
overspecification. The comment shoul d be struck

Accept ed.

21.1.1.6:
basic_string::resize should throw |l ength_error for n >= max_size(),

not n == npos.
Accept ed.

21.1.1.6:

resi ze(size_type) should not have a Returns clause -- it’'s a void

function. d ause should be | abel ed Effects.
Accept ed.

21.1.1.6:

resi ze(si ze_type) should call resize(n, charT()), not
resi ze(n, eos()).

Accept ed.

21.1.16:

basic_string::resize(size_ type) Notes says the nmenber function
‘‘Uses traits::eos(). It should actually use charT() instead.
The conment shoul d be struck.

Accept ed.
21.1.1.6:
basic_string::reserve says in its Notes clause, ‘‘It is guaranteed
that...’’ A non-nornative clause cannot nake guarantees. Since the

guarantee is inportant, it should be labeled differently.

(This is one of many Notes cl auses that make statenents that should

be normative, throughout the description of basic_string.)
Accept ed.

21.1.1.8.2:

basi c_string::append(size_type n, charT c¢) should return
append(basic_string(n, c)). Argunents are reversed.
Accept ed.

21.1.1.8.3:

basic_string::assign(size type n, charT ¢) should return
assign(basic_string(n, c)). Argunents are reversed
Accept ed.

21.1.1.8. 4:

basic_string::insert(size type n, charT ¢) should return
insert(basic_string(n, c)). Argunents are reversed.
Accept ed.

21.1.1.8. 4:

basic_string::insert(iterator p, charT c) should not return p
which nay well be invalidated by the insertion. It should return
the new iterator that designates the inserted character
Accept ed.

21.1.1.8. 4:

basic_string::insert(iterator, size type, charT) should return
void, not iterator. (There is no Returns clause, luckily.)
Accept ed.

21.1.1.8.5:
basic_string::renmove(iterator) says it ‘‘calls the character’s

destructor’’ for the renoved character. This is pure fabrication

since constructors and destructors are called nowhere else, for
el ements of the controlled sequence, in the managenent of the
basic_string class. The words shoul d be struck

Accept ed.

21.1.1.8.5:

basic_string::renove(iterator, iterator) says it ‘'
since constructors and destructors are call ed nowhere el se, for
el ements of the controll ed sequence, in the managenent of the

calls the character’s
destructor’’ for the renmoved character(s). This is pure fabrication

basic_string class. The words shoul d be struck
Accept ed.

21.1.1.8.5:

basic_string::renove(iterator, iterator) Conplexity says '‘the
destructor is called a nunber of tines ...’ This is pure fabrication
since constructors and destructors are call ed nowhere el se, for

el ements of the controll ed sequence, in the managenent of the

basi c_string class. The Conpl exity clause should be struck

Accept ed.

21.1.1.8.6:

repl ace(si ze_type posl, size_type, const basic_string& ...) Effects
has the expression ‘‘size() - &osl.’’ It should be ‘‘size() - posl.’
Accept ed.

21.1.1.8.6:

basic_string::replace(size_type, size_type n, charT c) should return
repl ace(pos, n, basic_string(n, c)). Argunents are reversed.
Accept ed.

21.1.1.8.8:

basi c_string::swap Conplexity says Constant time. It doesn’t
say with respect to what. Should probably say, ‘'‘with respect to
the lengths of the two strings, assuming that their two allocator
obj ects conpare equal.’’ (This assunes added wordi ng descri bing
how to conpare two all ocator objects for equality.)

Accept ed.

21.1.1.9.1:

basic_string::find(const charT*, ...) Returns has a comma m ssing
bef ore pos argunent.

Under consideration. See |ssue 21-088.

21.1.1.9.8:

basi c_string::conmpare has nonsensical semantics. Unfortunately,
the | ast version approved, in July "94 Resolution 16, is also
nonsensical in a different way. The description should be
restored to the earlier version, which at |east has the virtue

of capturing the intent of the original string class proposal

1) If nis less than str.size() it is replaced by str.size().

2) Conpare the smaller of n and size() - pos with traits::comnpare.
3) If that result is nonzero, returnit.

4) Gtherw se, return negative for size() - pos < n, zero for

size() - pos == n, or positive for size() - pos > n
Accept ed.
21.1.1.10.3:

operator!=(const basic_string& const basic_string& is anbiguous
in the presence of the tenplate operators in <utility> and it is
unnecessary. It should be renoved.

Not a probl em

21.1.1.10.5:

operat or>(const basic_string& const basic_string& is anbi guous
in the presence of the tenplate operators in <utility> and it is
unnecessary. It should be renoved.

Not a probl em

21.1.1.10.6:

oper at or <=(const basic_string& const basic_string& is anbi guous
in the presence of the tenplate operators in <utility> and it is
unnecessary. It should be renoved.

Not a probl em

->
->

->
->

->
->

21.1.1.10.7:

oper at or >=(const basic_string& const basic_string& is anbi guous
in the presence of the tenplate operators in <utility> and it is
unnecessary. It should be renoved.

Not a probl em

21.1.1.10.7:

operator>= with const charT* rhs should return
| hs >= basic_string(rhs), not <=

Accept ed.

21.1.1.10.8:

Semantics of operator>> for basic_string are vacuous.
Shoul d be nodel ed after those for earlier string class.
Accept ed.

21.1.1.10.8:

Semantics of operator<< for basic_string are vacuous.
Shoul d be nodel ed after those for earlier string class.
Accept ed.

21.1.1.10.8:
getline for basic_string reflects none of the changes adopted by
July "94 resolution 26. It should not fail if a line exactly fills,

and it should set failbit if it *extracts* no characters, not if it
appends no characters. Should be changed to match 27.6.1. 3.
Accept ed.

21.1.1.10.8:

getline for basic_string says that extraction stops when npos - 1
characters are extracted. The proper value is str.max_size() (which
is less than allocator.nax_size(), but shouldn’t be constrained
nore precisely than that). Should be changed.

Accept ed.

21. 2:
There are five Tabl e 44s.
Editorial .

21. 2:
<cstring> doesn’t define size_type. Should be size_t.
Accept ed.

22. 1:

tenpl at e operat or<<(basi c_ostream const |ocale& as well as
tenpl at e oper at or>>(basi c_ostream const |ocal e& now have a second
tenpl ate argunent (for ios traits) added w thout approval. Wile
this change may be a good idea, it should be applied uniformy (which
has not happened), and only after conmittee approval

Rej ect ed.

O her parts of the library clauses were changed to natch.

22.1.1:

| ocal e:: category is defined as type unsigned. For conpatibility with
C, it should be type int.

Accept ed.

The type is int in the current Working Draft.

22.1.1:

class local e has the constructor |ocale::|ocal e(const |ocal e& ot her,
const | ocal e& one, category). | can find no resolution that calls
for this constructor to be added.

Rej ect ed.

The conmittee has exanined this matter and el ected not to recormmend a
change to this part of the Wrking Draft.

->
->
->
->
->

->

->
->

->

22.1.1:

Exanpl e of use of num put has silly argunments. First argunent
shoul d be ostreanbuf iterator(s.rdbuf()).

Editorial.

22.1.1:

Par agraph 8 says that |ocale::transparent() has unspecified behavior
when i nbued on a streamor installed as the global locale. There is
no good reason why this should be so and several reasons why the
behavi or should be clearly defined. The sentence should be struck
The WG has voted to elimnate transparent |ocales

22.1.1:

Paragraph 9 says that ‘‘cach[e]ling results fromcalls to |ocal e facet
menber functions during calls to iostreaminserters and extractors,
and in streanbufs between calls to basic_streanbuf::inbue, is
explicitly supported.’’ In the case of inserters and extractors,

this behavior follows directly from paragraph 8. No need to say it
agai n. For basic_streanbuf, the draft can (and should) say explicitly
that the streambuffer fixates on a facet at inbue tinme and ignores
any subsequent changes that mght occur in the delivered facet

until the next inbue tine (if then). (An adequate lifetinme for the
facet can be assured by having the basic_streanbuf object nenorize

a copy of a locale object directly containing the facet,

as well as a pointer to the facet, for greater |ookup speed.)

In any event, saying sonething ‘‘is explicitly supported ' doesn't
make t he behavi or *required.* The paragraph should be struck, and
words added to the description of basic_streanbuf to clarify the
lifetime of an inmbued codecvt facet. (Mdre words are needed here
anyway, for other reasons.)

The paragraph referred to has been rewitten by the editor

In successive calls to a |locale facet nenber function during a cal
to an iostreaminserter or extractor or a streanbuf nenmber function,
the returned result shall be identical. [Note: This inplies that
such results may safely be reused without calling the locale facet
menber function again, and that nmenmber functions of iostream cl asses
cannot safely call inbue() thensel ves, except as specified el sewhere.

]

22.1.1.1.1:

Table 46 lists the ctype facets codecvt<char, wchar_t, nbstate t>
and codecvt<wchar_t, char, nbstate_t> as being essential, but what
about codecvt<char, char, nbstate t>? Should say that this facet

nmust be present and nmust cause no conversion

Accept ed.

The current Working Draft lists a codecvt<char, char,nbstate_t> facet.

22.1.1.1.1:
Tabl e 46, and paragraph 3 followi ng, identify the facets that inplenent
each local e category (in the Clibrary sense). But these words offer
no gui dance as to what facets should be present in the default

Il ocale (locale::classic()). The tenplate classes |isted each represent
an unbounded set of possible facets. Should list the follow ng
explicit instantiations of the tenplates as being required, along
with those explicit instantiations already listed in Table 46:

num get <char, istreanbuf iterator<char> >

num get <wchar _t, istreanbuf_iterator<wchar_t> >

num put <char, ostreanbuf _iterator<char> >

num put <wchar _t, ostreanbuf _iterator<wchar_t> >

nmoney_get <char, istreanbuf _iterator<char> >

nmoney_get <wchar t, istreanbuf iterator<wchar t> >

nmoney_put <char, ostreanbuf iterator<char> >

nmoney_put <wchar t, ostreanbuf iterator<wchar t> >

ti me_get<char, istreanbuf iterator<char> >

ti me_get<wchar _t, istreanbuf_iterator<wchar_t> >

->
->

->
->

ti me_put <char, ostreanbuf _iterator<char> >

ti me_put<wchar t, ostreanbuf iterator<wchar t> >
Accept ed.

The current Working Draft lists these facets.

22.1.1.2:

As nentioned earlier, locale::locale(const |ocale& const |ocaleg&,
category) has been added wi thout approval. It should be struck

Rej ect ed.

The conmittee has exanined this matter and el ected not to recormmend a
change to this part of the Wirking Draft.

22.1.1.3:

Description of locale::use() Effects contains a nonsense statenent:
‘* Because |l ocal e objects are i mutable, subsequent calls to use<Facet>()
return the same object, regardl ess of changes to the global |ocale.’
If a locale object is imrutable, then changes to the global |ocale
shoul d *al ways* shine through, for any facet that is not present
inthe *this locale object. If the intent is to mandate cacheing
semantics, as sketched out in the original |ocales proposal, this
sentence doesn’t quite succeed. Nor should it. Cacheing of facets
found in the global locale Ieads to horribly unpredictabl e behavior
i s unnecessary, and subverts practically any attenpt to restoee
compatibility with past Ct++ practice and the current C Standard

The sentence shoul d be struck.

The description has been changed elimnating caching senmantics.

22.1.1.3:
Description of locale::use Notes uses the term*‘value senmantics’
and the verb ‘‘to last.’”’ Are either of these terns defined within

the Standard? The sentence should be reworded, or struck since it’s
non- normati ve anyway.
The descripti on has been changed elininating the |anguage nenti oned.

22.1.1.5:
| ocal e::transparent () Notes says ‘‘The effect of inbuing this locale
into an i ostreans conponent is unspecified.”’” If this is a normative

statenent, it doesn’t belong in a Notes clause. And if it’s intended
to be normative, it should be struck. Inmbuing a streamwi th

| ocal e::transparent() is the *only* way to restore the behavi or

of iostreans to that in effect for *every* C++ programming running
today. It is also essential in providing conpatible behavior wth
the C Standard. The sentence shoul d be struck.

The menber transparent() has been elim nated.

22.2.1.3.3:

ctype<char > describes this subclause as overridden virtual functions,’
but they're not. A tenplate specialization has nothing to do with any
virtuals declared in the tenplate. Should be renaned

Editorial .

22.2.1. 4:

Description of codecvt, paragraph 3, fails to nmake clear how an

i npl ementation can ' ‘provide instantiations for <char, wchar _t,
nmbstate_t> and <wchar _t, char, nbstate_ t>."’ Mist specializations
be witten for the tenplate? If so, nust they also have virtuals
that do the actual work? O can the inplenentation add to the
default locale facets derived fromthe tenplate, overriding the
virtual do_convert? Needs to be clarified.

Editorial.

22.2.1. 4

| npl enent ati ons should al so be required to provide an instantiation
of codecvt<char, char, nbstate_ t> which transforns characters one
for one (preferably by returning noconv). It is needed for

the very conmon case, basic_fil ebuf <char>

->
->

->
->

->
->

->

->
->

Accept ed.
The current Working Draft requires this facet.

22.2.1.4.2:

codecvt::do_convert uses pointer triples (from fromnext, from end)
and (to, to_next, to_end) where only pairs are needed. Since the
function ‘*always | eaves the fromnext and to_next pointers pointing
one beyond the | ast character successfully converted,’’ the function
must be sure to copy fromto fromnext and to to to_next early on

A better interface would elininate the fromand to pointers.

Rej ect ed.

This was di scussed by the cormittee and no change was reconmended.

22.2.1. 4. 2:

codecvt::do _convert says ‘‘If no translation is needed (returns
noconv), sets to_next equal to argunent to.’’ The previous paragraph
strongly suggests that the function should also set fromnext to
from Presumably, the programw Il call do_convert once, with nothing
to convert. If it returns noconv, the programw ||l omt future calls
to do_convert. If that is the intended usage, then it should be
perm ssible to call any instance of do_convert with (nostly)

null pointers, to sinplify such enquiries -- and the wordi ng shoul d
make cl ear how to make such a test call

The Working Draft mentions a nenber "al ways_noconv()" which the
committee believes addresses this concern

22.2.1.4.2:
codecvt::do_convert Notes says that the function ‘‘Does not wite
into *to_limt.’' Since there is no requirenent that converted

characters be witten into sequentially increasing |ocations
starting at to, this is largely toothless. Effects clause
shoul d be witten nore precisely.

Editorial .

22.2.1.4.2:

codecvt::do_convert Returns says that the function returns partia
if it "‘ran out of space in the destination.’’ But the function
nbrtowc, for exanple, can consune the renmining source characters
beyond the | ast delivered character, and absorb theminto the
state. It would be a pity to require do_convert to undo this

wor k. Shoul d say that partial can also nmean the function ran out
of source characters partway through a conversion. Then clarify
that, after a return of partial, the next call to do_convert should
begin with any characters between fromnext and fromend, of which
there nmight be none.

Accept ed.

The current Working Draft clarifies this matter.

22.2.2. 1:

Tenpl ate class num get defines the type ios as basic_ios<charT>,
which it then uses widely to characterize paraneters. Thus, this
facet can be used *only* with iostreans classes that use the

default traits ios_traits<charT> Since the use of numget is
mandated for *all* basic_istreamclasses, this restriction rules out
essentially any substitution of traits. Best fix is to make the

i 0os paraneter an ios_base paraneter on all the do_get calls,

then change ios accordingly. This is sufficient if

setstate is noved to i os_base as proposed el sewhere. But it requires
further fiddling for numput if fill is noved *out* of ios_base

as al so proposed. Must be fixed, one way or another.

In the current Wirking Draft this paraneter is an ios_base& wth
error reporting via a separate iostate& paraneter.

22.2.2.2:
Tenpl ate cl ass num put defines the type ios as basic_ios<charT>,
which it then uses widely to characterize parameters. Thus, this

->

->
->

->
->

->
->
->
->
->
->
->
->

facet can be used *only* with iostreans classes that use the

default traits ios traits<charT>. Since the use of numput is
mandat ed for *all* basic_ostreamclasses, this restriction rules out
essentially any substitution of traits. Best fix is to make the

i 0s paraneter an ios_base paraneter on all the do_put calls,

then change ios accordingly. This is sufficient if

setstate is noved to i os_base as proposed el sewhere. But it requires
further fiddling for numput if fill is noved *out* of ios_base

as al so proposed. Must be fixed, one way or another

In the current Wirking Draft this paranmeter is an i os_base& wth
a separate fill character paraneter.

22.2.3.1:

The syntax specified for nuneric values is out of place in
nunmpunct .

Editorial.

22.2.3.1:

Description of nunmpunct says, ‘‘For parsing, if the digits portion

contains no thousands-separators, no grouping constraint is applied.’
Thi s suggests that thousands-separators are pernmitted in an input
sequence, and that the grouping constraint is applied, but it is
prof oundly uncl ear on how this m ght be done. Allow ng thousands-
separators at all in input is risky -- requiring that grouping
constraints be checked is an outrageous burden on inpl enentors,
for a payoff of questionable utility and desirability. Should
renove any requirenent for recogni zing thoudands-separators and
grouping on input. And the effect on output needs considerable
clarification.

Rej ect ed.

Di scussed by the committee, no change reconmended.

22.2. 4:

Tenpl ate classes collate, tinme_get, time_put, noney_get, noney_ put,
nmoney_punct, mnessages, and their support classes still have only
sketchy semantics -- over a year after they were originally

accepted into the draft. They are based on little or no prior

art, and they present specification problens that can be addressed
properly only with detail ed descriptions, which do not seemto be
forthconming. Even if adequate wording were to magically appear

on short notice, the public still deserves the courtesy of a
proper review. For all these reasons, and nore, the remai nder

of clause 22 fromthis point on should be struck

Still under consideration

22.2.7.1:

nmessages_base: : THE_POSI X _CATALOG | DENTI FI ER_TYPE i s not a defined type.
Accept ed.

The current Working Draft defines this type as int.

27.1. 1:

The definition of character’’ is inadequate. It should say that it
is a type that doesn’'t need to be constructed or destroyed, and that
a bitwi se copy of it preserves its value and semantics. It should

al so say that it can’'t be any of the builtin types for which conflicting
inserters are defined in ostreamor extractors are defined in istream

Rej ect ed.
As stated in 27.1.1 [lib.iostreans.definitions], the WP provi des two
definitions related to ‘‘character’’. The ‘'‘character container type’

definition states that a character container class shall have a
trivial constructor and destructor and a copy constructor and copy
assi gnnent operator that preserves its value and senantics. The WP
definitions for ‘‘character’’ and character container type'’' is

adequate in the sense that it allows inplenmentation to work fine while

not restraining future character types.

->
->

->

->
->

27.1.2. 4.

Description of type POS T contains nmany awkward phrases. Needs rewriting

for clarity.
Editorial.

27.1.2. 4:
Paragraph 2 has ‘‘alg’’ instead of *‘‘all.’’
Accept ed.

27.1.2. 4.

Foot note 207 should say ‘‘for one of’’ instead of ‘‘for one if."’
Al so, it shoul d' ‘whose representation has at least’’ instead of
‘*whose representation at |east.’

Editorial .

27. 2:

Forward decl arations for tenplate classes basic_ios, basic_istream
and basi c_ostream shoul d have two cl ass parameters, not one. It

is equally dicey to define ios, istream etc. by witing just one
paraneter for the defining classes. Al should have the second

par aneter supplied, which suggests the need for a forward reference

to tenplate class ios_char _traits as well, or at least the two usua
speci al i zati ons of that class.

Still being considered.

27. 3:

<iostrean> is required to include <fstreanr, but it contains no overt
references to that header

Rej ect ed.

<iostream> is not required to include <fstreanp.

27. 3. 1:
cin.tie() returns &cout, not cout.
Accept ed.

27. 3. 2:

win.tie() returns &cout, not cout.

Rej ect ed.

wein.tie() returns &wout, not cout, &cout or wcout.

27. 4:

streansi ze i s shown as having type INT_T, but subclause 27.1.2.2
says this is the integer formof a character (such as int/wint_t).
streansi ze really nust be a synonymfor int or long, to satisfy al
constraints inposed on it. (See Footnote 211.)

Accept ed.

streansi ze i s now of type SZ T.

27. 4:

Synopsis of <ios> is mssing streanpos and wstreanpos. (They appear
in later detailed senantics.) Shoul d be added.

Still being considered.

27. 4.

Synopsi s of <ios> has the declaration

tenpl ate <class charT> struct ios_traits<charT>;
The trailing <charT> should be struck

Editorial.

The trailing <charT> needs to be struck

27. 4. 1:
Type wstreanoff seens to have no specific use. It should be struck
Still being considered.

27. 4. 2:
ios traits::state type is listed as

to be specified.’

->
->
->

->

->
->

->

->
->
->
->
->

->
->

->
->
->
->
->

->
->
->

It needs to be specified.

Accept ed.

ios traits::state type is now defined as being of type
STATE T, which is defined in 27.1.2.6 [lib.iostreans.state.t].

27. 4. 2:

Definition of ios_traits lists arguments backwards for is_whitespace.
Shoul d have const ctype<char type>& second, as in |later description
(Al'so, first argunent should be int_type, as discussed in 27.4.2.3.)
Accept ed.

27. 4. 2:

ios_traits description should make cl ear whet her user specialization
is permtted. If it isn't, then various operations in <local e> and
string_char _traits are rather restrictive. |If it is, then the draft
shoul d be clear that ios_traits<char> and ios_traits<wchar_t> cannot
be di spl aced by a user definition

ios_traits and string char _traits were deprecated in favor of

char _traits, so the conment is no |onger valid.

27. 4. 2:

The draft now says ‘‘an inplenentation shall provide' ' instantiations
of ios_traits<char> and ios_traits<wchar_t>. It was changed wi t hout
approval from*‘an inplenmentation may provide.’’ This change directly

contradi cts Nov 94 Resolution 23. The proper wordi ng should be
restored.

Rej ect ed.

An inplementation has to provide instantiations of ios_traits<char>
and ios_traits<wchar_t>, therefore using ‘‘shall’’ rather than

‘“‘may’’ reflect the correct intended mneaning.

27.4.2.2:

ios traits::not_eof should take an argunent of int_type, not char_type.
Accept ed.

27.4.2.2:

ios_traits::not_eof says nothing about the use made of its argument c.
Shoul d say that it returns ¢ unless it can be m staken for an eof ().
Accept ed.

ios traits and string char traits were deprecated in favor of
char_traits. The description of char_traits::not_eof is:

Returns: ¢, if leq_int_type(c,eof()), otherw se some value v such
that 'eqg_int_type(v,eof()).

27.4.2.2:

ios_traits::not_eof has two Returns clauses. The second is an
overspecification and should be struck

Accept ed.

See 27.4.2.1 [lib.ios.traits.val ues]

27.4.2.2:

ios_traits::length has an Effects clause but no Returns clause.
The Effects clause should be reworded as a Returns cl ause.
Accept ed.

ios_traits and string _char _traits were deprecated in favor of
char _traits. The description of char_traits::lenght is:
Returns: the snallest non-negative value of i such that the
expression eq(s[i],charT(0)) is true.

27.4.2.3:

First argunent to is_whitespace has been changed fromint_type to
char_type with no enabling resolution. It is also a bad idea
Shoul d be restored to int_type.

Rej ect ed.

The function is_whitespace was deprecated, so the coment is no

| onger valid.

->
->
->

->
->

->
->

->
->

->
->
->
->

->
->
->

27.4.2.3:

i s_whi tespace supposedly behaves
but that function doesn’t exist. Should say
ctype.is(ctype_base::space, c).’

Rej ect ed.

The function is_whitespace was deprecated, so the coment is no
| onger valid.

as if it returns ctype.isspace(c),’
‘*as if it returns

27.4.2.3:
The draft now says that ios_traits functions to_char_type, to_int_type,
and copy are ‘‘provided fromthe base struct

string_char_traits<CHAR-T>."" This is a substantive change nmade
wi t hout approval. It is also nonsensical, since there is no such
‘‘base struct.’’ The wordi ng should be struck

Accept ed.

27.4.2. 4:

ios_traits::to_char_type has an Effects clause which should be
reworded as a Returns cl ause.

Accept ed.

See 27.4.2.3 [lib.ios.traits.convert]

27.4.2. 4:

ios_traits::to_int_type has an Effects clause which shoul d be
reworded as a Returns cl ause.

Accept ed.

See 27.4.2.3 [lib.ios.traits.convert]

27.4.2. 4:

ios_traits::copy has an Effects clause which should be

reworded as a Returns clause. (It returns src.)

Accept ed.

Add ‘ ‘Returns: dest’’ as Returns clause, and keep the Effects cl ause.

27.4.2. 4:

ios_traits::get_state should be specified to do nore than return zero.
Senantics are inadequate. A pos_type conceptually has three
conmponents: an off _type (streansize), an fpos_t, and a state_type
(mbstate t, which may be part of fpos t). It nust be possible

to conpose a pos_type fromthese elenents, in various conbinations,
and to deconpose theminto their three parts

Accept ed.

ios traits and string char traits were deprecated in favor of

char _traits. The description of char traits::get_state is:

Returns: A ’state_type’ value which represents the conversion state
in the object ’'pos’

27.4.2. 4:

ios traits::get_pos should be specified to do nore than return
pos_type(pos). Semantics are inadequate. See conments on get state.
above.

Still being considered.

27. 4. 3:

ios base::fill() cannot return int_type because it’s not defined.
Should be int if fill() is left in ios_base.

Accept ed.

fill() has been noved to basic_ios, and the function signature is
‘“‘char_type fill() const’’

27. 4. 3:

i os_base::precision() and width() should deal in streansize
arguments and return values, not int. (Even nore precisely,
they shoul d be noved to basic_ios and have all their types

changed to traits::streanoff.)

->
->
->
->
->

->

->

->

Accepted for the first part.

i 0s_base::precision() and width() are using argunents and return
val ues of type streansize (see 27.4.3.2).

streansize is the correct type to use versus traits::streanoff

(see 27.1.2.5 and 27.1.2.3).

27.4.3.1.6:

~Init() should call flush() for wout, werr, and w og, not just for
cout, cerr, and clog.

Accept ed.

27.4.3. 2:

ios_base::fill(int_type) cannot receive or return int_type

because it’'s not defined. Both should be int if fill(int_type)

is left in ios_base.

Accept ed.

i os_base::fill(int_type) has been noved to basic_ios, and the function
signature is ‘‘char_type fill(char_type ch)’’.

27.4.3. 4:
i os_base::iword allocates an array of |long, not of int.
Accept ed.

27. 4. 3. 4:

i 0s_base::iword Notes describes a normative limtation on the lifetine
of a returned reference. It should not be in a Notes clause. It should
al so say that the reference becones invalid after a copyfnt, or when
the i os_base object is destroyed.

Accept ed.

27.4. 3. 4:

i 0s_base:: pword Notes describes a normative limtation on the lifetine
of a returned reference. It should not be in a Notes clause. It should
al so say that the reference becones invalid after a copyfnt, or when
the i os_base object is destroyed.

Accept ed.

27.4.3.5:

Protected constructor ios_base::ios _base() nust *not* assign initia
values to its menber objects as indicated in Table 72. That operation
nmust be deferred until basic_ios::init is called. Should say here
that it does no initialization, then nove Table 72 to description of
basic_ios::init (27.4.4.1). Also should enphasize that the object
nmust be initialized before it is destroyed (thanks to reference
counting of |ocale objects).

Accept ed.

See 27.4.3.5 [lib.ios.base.cons] and 27.4.4.1 [lib. basic.ios.cons]
tabl e 83.

27.4.3.5:

Table 72 shows result of rdstate() for a newy constructed

i 0s_base object, but that object defines no such nenber function
(WIl be fixed if table is nmoved to basic_ios, as proposed.)
Accept ed.

See 27.4.4.1 [lib.basic.ios.cons] table 83.

27.4.4.1:
basic_ios::basic_ios() has next to no semantics. Needs to be

speci fi ed:
Ef fects: Constructs an object of class basic_ios, leaving its
menber objects uninitialized. The object *nust* be initialized
by calling init(basic_streanbuf *sb) before it is destroyed.
Accept ed.

27.4.4. 1.

basic_ios::init(basic_streanbuf *sb) has no senmantics
Needs to be specified:

Post condi tions: rdbuf() == sb, tie() == 0, ios_base initialized
according to Table 72 (currently in 27.4.3.5).

Accept ed.

27.4.4.2

basic ios::tie is not necessarily synchronized with an *input*
sequence. Can al so be used with an output sequence.
Accept ed.

27.4.4.2

basic_ios::inbue(const |ocal e& should call rdbuf()->pubinbue(l oc)
only if rdbuf() is not a null pointer. Even better, it should not
call rdbuf ()->pubi nbue(loc) at all. Changing the |ocal e that
control s stream conversions is best decoupled from changi ng

the locale that affects nunmeric formatting, etc. Anyone who knows
how to i mbue a proper pair of codecvt facets in a streanbuf won't
m nd having to nake an explicit call

Still being considered.

27.4.4. 2:

basi c_ios::inbue(const |ocal e& doesn't specify what value it returns.

Shoul d say it returns whatever ios_base::inbue(loc) returns.
Accept ed.

27.4.4.2

basi c_ios::copyfnm should say that both rdbuf() and rdstate() are
| eft unchanged, not just the latter

Accept ed.

27.5.2:
basi c_streanbuf::sgetn should return streansize, not int_type
Accept ed.

27.5. 2:
basi c_streanbuf::sungetc should return int_type, not int
Accept ed.

27.5. 2:
basi c_streanbuf::sputc should return int_type, not int
Accept ed.

27.5.2:
basi c_streanbuf::sputn should return streansize, not int_type
Accept ed.

27.5.2.2.3:

In in_avail Returns: gend() should be egptr() and gnext() should be

gptr().
Accept ed.

27.5.2.2.3:

basi c_streanbuf::sbunpc Returns should not say the function
converts *gptr() to char_type. The function returns the int_type
result of the call.

Editorial .

27.5.2.2.3:

basi c_streanbuf::sgetc Returns should not say the function
converts *gptr() to char_type. The function returns the int_type
result of the call.

Editorial .

27.5.2.2.3:
basi c_streanbuf::sgetn should return streansize, not int.

->
->

->
->

->
->

->
->

->

Accept ed.

27.5.2.2. 4

basi c_streanbuf::sungetc should return int_type, not int.

Accept ed.

27.5.2.2. 4:

basi c_streanbuf::sputc should return int_type, not int.

Accept ed.

27.5.2.2.5:

basi c_streanbuf::sputc does not return *pptr(), which points at
storage with undefined content. It returns traits::to_int_type(c).
Accept ed.

See 27.5.2.2.5 Put area [lib.streanbuf. pub. put]
27.5.2.4.2:

basi c_streanbuf::sync now requires that buffered input characters
‘‘are restored to the input sequence.’’ This is a change nade wi t hout
approval. It is also difficult, or even inpossible, to do so for

i nput streans on sone systenms, particularly for interactive or

pi pelined input. The Standard C equival ent of sync |eaves

i nput al one. Posix *discards* interactive input. This added requirenent
is none of the above. It should be struck

Rej ect ed.

The change nentioned above is not part of the draft standard.
27.5.2. 4. 3:

basi c_streanbuf:: showranyc Returns has been corrupted. The function
shoul d return the nunber of characters that can be read with no fear
of an indefinite wait while underflow obtains nore characters fromthe
i nput sequence. traits::eof() is only part of the story. Needs to be
restored to the approved intent. (See footnote 218.)

Rej ected, with no further action

Footnote 12 says: "The intention is not only that the calls will not
return eof () but that they will return "imrediatly"."

27.5.2.4.3:

basi c_streanbuf:: showranyc Notes says the function uses traits::eof().
Not necessarily true.

Editorial.

The Notes shoul d be rempved.

27.5.2.4.3:

Footnote 217 is nonsense unl ess showmny is corrected to showranyc.
Accept ed.

See footnote 231.

27.5.2.4.3:

basi c_streanbuf::underflow has two Returns clauses. Should conbi ne
themto be conprehensive.

Accept ed.

27.5.2.4.3:

basi c_streanbuf::ufl ow default behavior *'‘does’’ gbunp(l),

not gbunp(-1). It also returns the value of *gptr() *before*
“*doing’’ gbunp.

Still being considered.

27.5.2.4.3:

basi c_streanbuf:: ufl ow has a nonsense Returns cl ause. Should be struck
Accept ed.

27.5.2. 4. 4:

basi c_streanbuf:: pbackfail argunent should be int_type, not int.
Accept ed.

->
->
->
->
->

->

27.5.2.4. 4:
basi c_streanbuf:: pbackfail Notes begins a sentence with *‘Qher

calls shall.’”’ Can't apply ‘‘shall’’ to user program behavi or
by the accepted conformance nodel .

Editorial .

27. 6:

<i omani p> synopsi s has includes for <istream and <ostreane, but

none of the declarations appear to depend on either of these headers.
They shoul d be replaced by an include for <ios>.
Accept ed.

27. 6:

<i omani p> does *not* define a single type smanip. Rather, it
defines at least two different types which depend on the type

of the function argunent. Shoul d probably say that each function
returns sone unspecified type suitable for inserting into an
arbitrary basic_ostream object or extracting froma basic_istream
obj ect.

Still being considered.

27.6.1. 1:

basi c_istream: seekg(pos_type&) and basic_istream:seekg(off_type&
i 0s_base: : seekdir) should both have const first parameters.

Accept ed.

27.6.1. 1:

basi c_i stream paragraph 2 says extractors may call rdbuf()->sbunmpc(),
rdbuf ()->sgetc(), or ‘‘other public nenbers of istream except that
they do not invoke any virtual nmenbers of rdbuf() except uflow).’’

This is a constraint that was never approved. Besides, rdbuf()->sgetc()

i nvokes underflow), as does uflow() itself, and the exanple

of ipfx in 27.6.1.1.2 uses rdbuf()->sputbackc(). The added constraint
shoul d be struck.

Accept ed.

27.6.1. 1:

basic_istreamdefinition, paragraph 4 is confusing, particularly in
the light of simlar errors in 27.6.2.1 and 27.6.2.4.2 (basic_ostrean).
It says, ‘‘If one of these called functions throws an exception, then
unl ess explicitly noted otherwi se the input function calls
setstate(badbit) and if badbit is on in exception() rethrows the
exception without conpleting its actions.’’ But the setstate(badbit)
call may well throw an exception itself, as is repeatedly pointed

out throughout the draft. In that case, it will not return contro

to the exception handler in the input function. So it is foolish to
test whether badbit is set -- it can't possibly be. Besides, | can
find no coomittee resolution that calls for exceptions() to be
queried in this event.

An alternate reading of this vague sentence inplies that setstate
shoul d rethrow t he exception, rather than throw i os_base::failure,

as is its custom But the interface to setstate provides no way

to indicate that such a rethrow should occur, so these putative
semanti cs cannot be i npl enent ed.

The fix is to alter the ending of the sentence to read, ‘‘and if
setstate returns, the function rethrows the exception w thout
completing its actions.”’ (It is another matter to clarify what

i s meant by
Accept ed.
section 27.6.1.1 Tenplate class basic_istream[lib.istreani
paragraph 4 has been reworded to say:

"If one of these called functions throws an exception, then unless
explicitly noted otherwi se the input function set badbit in error
state. |If badbit is on in exception(), the input function rethrows
the exception w thout conpleting its actions, otherwise it does not

completing its actions.’’)

->
->

->
->

->
->

->
->

->
->
->

throw anything and treat as an error."
The sane change has been nmade in section 27.6.2.4.2 (basic_ostream

27.6.1.1.2:

basic_istream:ipfx Notes says the second argunent to traits:
is_whitespace is ‘‘const locale **’. The exanple that imediately
follows makes clear that it should be ‘‘const ctype<charT>& '.

Rej ect ed.

Function is_whitespace was deprecated and the sentry class was
accepted, so the exanpl es have been rewitten.

27.6.1.1.2:

Foot note 222 nakes an apparently normative statenment in
a non-nornative context.

Accept ed.

Foot note 222 was renpved.

27.6.1.2.1:

basic_istream description is silent on how void* is converted.
Can an inplenentation use num get<charT>::get for one of the

i nteger types? Must it *not* use this facet? Is a version of
get nmissing in the facet? Needs to be clarified.

Rej ect ed.

The conmittee doesn’t really understand the question

27.6.1.2. 1:
Exanpl e of call to num get<charT>::get has nonsense for first two
argunents. Instead of ‘‘(*this, 0, '’ they should be

be ** (istreanbuf _iterator<charT>(rdbuf()),

i streanbuf _iterator<charT>(0), ’

Rej ect ed.

Appropriate constructors are provided in the class istreanbuf _iterator
See section 24.4.3 [lib.istreanbuf.iterator]

27.6.1.2. 1:
Exanpl e of nuneric input conversion says ‘‘the conversion occurs
‘as if’ it perforned the followi ng code fragnent.’’ But that

fragment contains the test ‘‘(TYPE)tnp != tnp’’ which often has
undefi ned behavior for any value of tnp that might yield a true
result. The test should be replaced by a netastatenment such as

‘“‘<tnp can be safely converted to TYPE>'. (Then num get needs

a version of get for extracting type float to make it possible

to wite numget in portable C++ code.)

Accept ed.

27.6.1.2. 1:

Par agraph 4, | ast sentence doesn’'t make sense. Perhaps ‘‘since the
flexibility it has been...’’ should be, ‘‘since for flexibility

it has been...’’ But I’'mnot certain. Subsequent sentences are
even nore mysterious.

Editorial.

27.6.1.2. 1:

Use of numget facets to extract numeric input |eaves very unclear
how st reanbuf exceptions are caught and properly reported. 22.2.2.1.2
makes clear that the numget::get virtuals call setstate, and hence
can throw exceptions *that should not be caught* within any of the

i nput functions. (Doing so typically causes the input function to
call setstate(badbit), which is *not* called for as part of reporting
eof or scan failure. On the other hand, the numget::get virtuals

are called with istreanbuf iterator argunents, whose very constructors
m ght throw exceptions that need to be caught. And the description of
the numget::get virtuals is silent on the handling of streanbuf
exceptions.

So it seens inperative that the input functions wap each call to

->

->
->
->

->
->

->

->
->
->

->
->
->

a numget::get function in a try block, but doing so will intercept
any exceptions thrown by setstate calls within the numget:: get
functions.

A rel ated problem occurs when eofbit is on in exceptions and the
program attenpts to extract a short at the very end of the file.
If numget::get(..., long) calls setstate, the failure exception
will be throwm before the long value is converted and stored in
the short object, which is *not* the approved behavi or

The best fix | can think of is to have the num get:: get
functions return an ios_base::iostate mask which specifies what
errors the caller should report to setstate. The i 0s& argunent
could be a copy of the actual ios for the stream but wth
exceptions cleared. The numgget::get functions can then continue
to call setstate directly with no fear of throwi ng an exception
But all this is getting very nessy for such a tine critica
operation as nuneric input.

Accept ed.

The num get::get functions are now taking a reference to an

i 0s_base::iostate mask, which specifies the type of error(s)
that occurred while extracting the nuneric val ue.

See January 1996 WP, section 22.2.2.1 [lib.local e.num get]

27.6.1.2. 2:
basi c_i stream : operator>>(char_type *) extracts an upper limt of
nuneric_limts<int> :max() ‘‘characters.’”” This is a silly and

arbitrary nunber, just like its predecessor |NT_MAX for
characters of type char. A nore sensible value is size t(-1) /
sizeof (char_type) - 1. Could just say ‘‘the size of the |argest
array of char_type that can also store the terninating null.’
basi c_i stream : operat or>>(bool & has nonsense for its first
two argunents. Should be

i streanbuf iterator<charT, traits>(rdbuf()),

i streanbuf iterator<charT, traits>(0), etc
Accepted for the first part.
basi c_i stream : operator>>(char_type *) now says: ‘‘CGtherwise nis
the nunber of elements of the | argest array of char_type that can
store a termnating eos.’

Rej ected for the second part.

Appropriate constructors are provided in the class istreanbuf iterator

See section 24.4.3 [lib.istreanbuf.iterator]

27.6.1.2. 2:

basic_istream: (bool & paragraph 3 describes the behavior of
num get::get. Description belongs in clause 22

Editorial.

27.6.1.2.2:

basi c_i stream : operat or>>(unsi gned short&) cannot properly check

negated inputs. The C Standard is clear that -1 is a valid field,

yielding Oxffff (for 16-bit shorts). It is equally clear that
Oxffffffff is invalid. But numget::get(... unsigned |ong&)

delivers the same bit pattern for both fields (for 32-bit

longs), with no way to check the origin. One fix is to have

the extractor for unsigned short (and possibly for unsigned int)

pick off any '-’ flag and do the checki ng and negati ng properly,

but that precludes a user-supplied replacenent for the num get

facet from doing sonme other magic. Either the checking rules

nmust be weakened over those for Standard C, the interface to

num get must be broadened, or the extractor nust be permitted

to do its own negation.

Accept ed.

The class num get, section 22.2.2.1 has now get nenber functions

for unsigned short, unsigned int, and unsigned |long. This solve

t he probl em descri bed above.

->
->
->
->
->
->
->

->

->
->
->
->

->

->
->

27.6.1.2. 2:

basi c_i stream : operator>>(basi c_streanbuf *sb) now says, ‘‘If sb is
null, calls setstate(badbit).’’ This requirenment was added wi t hout
committee approval. It is also inconsistent with the w despread

convention that badbit should report loss of integrity of the stream
proper (not some other strean). A null sb should set failbit.
Still being considered.

27.6.1.2. 2:

basi c_i stream : operat or>>(basi c_streanbuf <charT,traits>* sb), |ast
line of Effects paragraph 4 can’t happen. Previous sentence says,
“*1f the function inserts no characters, it calls setstate(failbit),
whi ch may throw i os_base failure. Then the | ast sentence says

“*1f failure was due to catching an exception throw while extracting
characters fromsb and failbit is on in exceptions(), then the caught
exception is rethrown.’’ But in this case, setstate has already thrown
i 0os_base::failure. Besides, | can find no conmittee resol ution

that calls for exceptions() to be queried in this event.

In fact, the approved behavior was sinply to term nate the copy
operation if an extractor throws an exception, just as for

get (basic_streanbuf& in 27.6.1.3. Last sentence should be struck
Accept ed.

Par agr aph 4 now says:

"If the function inserts no characters, it calls setstate(failbit),
which may throw i os_base::failure. If failure was due to catching

an exception thrown while extracting characters fromsb and failbit
is on in exception(), then the caught exception is rethrown."
Concerning the second part of the conmment, section 27.6.1.1

Tenpl ate class basic_istream[lib.istrean] paragraph 4 clarifies

the fact that exceptions() needs to be queried.

27.6.1.3:

basi c_istream: get(basic_streanbuf& sh) Effects says it inserts
characters ‘‘in the output sequence controlled by rdbuf()."’
Shoul d be the sequence controlled by sb

Accept ed.

27.6.1. 3:

basic_istream:readsone refers several tines to in_avail (), which
is not defined in the class. Al references should be to

rdbuf ()->in_avail (). And the description should specify what
happens when rdbuf() is a null pointer. (Presunably sets badbit.)
Accepted for the first part.

See 27.6.1.3 [lib.istreamunformatted].

There is no need to check if rdbuf() is a null pointer, because
in this case the istream object should be in bad state, which
means that the call to ipfx (or constructing the newly sentry object)
will return FALSE

27.6.1. 3:

basic_istream:readsone is now defined for rdbuf()->in_avail () < 0.
The original proposal defined only the special value -1. G herw se,
it requires that rdbuf()->in_avail >= 0. Should be restored.

Accept ed.

27.6.1.3:

basi c_istream:readsone cannot return read, as stated. That
function has the wong return type. Should return gcount().
Accept ed.

The Returns: clause says ‘‘The nunber of characters extracted .

27.6.1. 3:

basi c_i stream: put back does *not* call ‘°‘rdbuf->sputbackc(c)’’
It calls ‘‘rdbuf()->sputbackc(c)’’ and then only if rdbuf()

is not null

Editorial.

->
->
->
->
->
->

->
->
->
->

->
->
->
->
->
->
->
->

->
->

The definition of the function is gone it as been repl aced
by the definition of basic_istream:unget. It shoul d say:
Effects: If rdbuf() is not null, calls rdbuf()->sputbackc(c).
If rdbuf() is null, or if sputbackc(c) returns traits::eof(),

calls setstate(badbit) (which nay throw ios_base::failure (27.4.4.3)).

Returns: *this.

27.6.1. 3:

basi c_istream:unget does *not* call r dbuf - >sungetc(c)’'’.
It calls ‘‘rdbuf()->sungetc(c)’’ and then only if rdbuf()
is not null

Accept ed.

27.6.1. 3:

basi c_istream:sync describes what happens when rdbuf()->pubsync()
returns traits::eof (), but that can’t happen in general because
pubsync returns an int, not an int_type. This is an unauthori zed,
and ill-advised, change fromthe original EOF. Return value should
al so be ECF.

Accept ed.

The return val ue of rdbuf()->pubsync() is now -1 on failure, and
the description of basic_istream:sync has been changed to:

“*... calls rdbuf()->pubsync() and, if that function returns -1 ..

27.6.1. 3:

basic_istream:sync Notes says the function uses traits::eof().
Qobviously it doesn't, as described above. O ause should be struck
Accept ed.

27.6.2. 1:

basi c_ostream : seekp(pos_type&) and basic_ostream :seekp(off_type&,
i os_base: : seekdir) should both have const first paraneters.

The first paraneters are now passed by val ue.

27.6.2. 1:
basic_ostreamdefinition, last |ine of paragraph 2 can’t happen
It says, ‘‘If the called

function throws an exception, the output function calls
setstate(badbit), which may throw i os_base::failure, and if badbit

is on in exceptions() rethrows the exception.’’ But in this case,
setstate has already thrown ios_base::failure. Besides, |I can find
no conmittee resolution that calls for exceptions() to be queried
in this event. Last sentence should end with, ‘‘and if setstate
returns, the function rethrows the exception.’

Accept ed.

section 27.6.2.1 Tenplate class basic_ostream[lib. ostreani
paragraph 3 has been reworded to say:
"If one of these called functions throws an exception, then unless

explicitly noted otherwi se the output function set badbit in error state.
If badbit is on in exception(), the output function rethrows the exception

wi thout conpleting its actions, otherwise it does not throw anything
and treat as an error."

27.6.1.2.1:

Use of numput facets to insert nuneric output |eaves very unclear
how output failure is reported. Only the ostreanbuf _iterator knows
when such a failure occurs. If it throws an exception, the calling
code in basic_ostreanbuf is obliged to call setstate(badbit) and
rethrow t he exception, which is *not* the approved behavi or

for failure of a streanbuf prinitive

Possi bl e fixes are: have ostreanbuf iterator report a specific
type of exception, have ostreanbuf iterator remenber a failure

for later testing, or give up on restoring past behavior. Sonething
nust be done in this area, however

Accept ed.

A menber function ‘‘bool failed() const throw()’'’ has been added

->
->
->
->

->
->

->

->

->
->
->

->

->
->
->
->
->
->
->
->

to the ostreanbuf _iterator tenplate class. This function returns
true if in any prior use of nenber operator=, the call to

sbuf _->sputc() returned traits::eof; or false otherw se.

See 24.4.4.2 [lib.ostreanbuf.iter. ops].

27.6.2.4. 1:
Table 76 is mistitled. It is not just about floating-point conversions.
Edi tori al

27.6.2.4. 1:

Tabl e 77 has an unaut hori zed change of rules for determning fill
padding. It gives the three defined states of flags() & adjustfield as
left, internal, and otherwise. It should be right, internal, and
otherw se. Needs to be restored to the earlier (approved) |ogic.

Still being considered.

27.6.2.4.2:

basi c_ost reanx<oper at or <<(bool) shoul d use ostreanbuf _iterator,
not istreanbuf_iterator. The first argunment is also wong in the
call to num put:: put.

Editorial .

It should be ostreanbuf iterator

27.6.2.4.2:
basi c_ostream : oper at or <<(basi c_streanbuf *sb) says not hi ng about
sb being null, unlike the correspondi ng extractor (27.6.1.2.2).

Shoul d either | eave both undefined or say both set failbit.

Accept ed.

If sbis null, the function basic_ostream : operator<<(basi c_streanbuf *sb)
calls setstate(badbit) (the correspondi ng extractor does too0).

27.6. 2. 4:

basi c_ostream : operat or<<(streanbuf *) says nothing about the failure

i ndi cation when ‘‘inserting in the output sequence fails’'’'. Should

say the function sets badbit.

Accept ed.

If sbis null, the function basic_ostream : operator<<(basi c_streanbuf *sb)
calls setstate(badbit) (the correspondi ng extractor does too).

See 27.6.2.4.2 [lib.ostreaminserters].

27.6.2.4.2:

basi c_ostream : oper at or <<(basi c_streanbuf <charT, traits>* sb), |ast
line of Effects paragraph 2 can’t happen. Previous sentence says that
if ‘‘an exception was thrown while extracting a character, it calls
setstate(failbit) (which may throw ios_base::failure).’’ Then the

| ast sentence says, ‘‘If an exception was thrown while extracting a
character and failbit is on in exceptions() the caught exception

is rethrown.’’ But in this case, setstate has already thrown

i os_base::failure. Besides, | can find no commttee resol ution

that calls for exceptions() to be queried in this event. And an
earlier sentence says unconditionally that the exception is rethrown.
Last sentence shoul d be struck

Accept ed.

Par agr aph 3 now says:

"If the function inserts no characters, it calls setstate(failbit),
which may throw i os_base::failure. If an exception was thrown while
extracting a character the function set failbit in error state, and
if failbit is on in exceptions(), then the caught exception is
rethrown."

Concerning the second part of the conment, section 27.6.2.1

Tenpl ate cl ass basic_ostream [lib. ostrean] paragraph 3 clarifies
the fact that exceptions() needs to be queried.

27.6.2.5:
basic_ostream:flush can't test for a return of traits::eof () from
basi c_streanbuf:: pubsync. It tests for EOCF

->
->
->
->

->
->

Accept ed.

The return val ue of rdbuf()->pubsync() is now -1 on failure, and
the description of basic_istream:flush has been changed to:

o calls rdbuf()->pubsync(). If that function returns -1 ...’
27. 6. 3:

‘*headir’’ should be **header.’

Accept ed.

27.6. 3:

<i omani p> does *not* define a single type smanip. Rather, it
defines at least two different types which depend on the type

of the function argunment. Shoul d probably say that each function
returns sone unspecified type suitable for inserting into an
arbitrary basic_ostream object or extracting froma basic_istream
obj ect.

Still being considered.

27. 7:

<sstreant synopsis refers to the nonsense class int_charT traits.
It should be ios traits.

Accept ed.

27.7:
Table 77 (<cstdlib> synopsis) is out of place in the mddle of
the presentation of <sstreanp.

Accept ed.

27.7.1:

basi c_stringbuf:: basic_stringbuf(basic_string, opennode) Effects
repeats the phrase ‘‘initializing the base class with
basic_streanbuf().’’ Strike the repetition

Accept ed.

See 27.7.1.1 [lib.stringbuf.cons].

27.7. 1:

basi c_stringbuf:: basic_stringbuf(basic_string, opennode) Postconditions
requires that str() == str. This is true only if which has in set.
Condi ti on shoul d be restat ed.

Still being considered.

27.7. 1:

Tabl e 78 describes calls to setg and setp with string
argunents, for which no signature exists. Needs to be recast.
Still being considered.

27.7.1:

basi c_stringbuf::str(basic_string s) Postconditions

requires that str() ==s. This is true only if which had in set
at construction time. Condition should be restated.

Still being considered.

27.7.1.2:

Tabl e 80 describes calls to setg and setp with string
argunents, for which no signature exists. Needs to be recast.
Still being considered.

27.7.1.3:

basi c_stringbuf::underflow Returns should return int_type(*gptr()),
not char _type(*gptr()).

Accept ed.

27.7.1.3:

basi c_stringbuf::pbackfail returns ¢ (which is int _type) in first case,
char _type(c) in second case. Both cases should be c.

Accept ed.

->
->

27.7.1.3:

basi c_stringbuf:: pbackfail supposedly returns ¢ when ¢ == eof ().
Shoul d return traits::not_eof(c).

Accept ed.

27.7.1.3:

basi c_stringbuf::seekpos paragraph 4 has ‘‘positionedif’’ run together
Accept ed.

27.8.1. 1:

basi c_fil ebuf paragraph 3 talks about a file being *‘open for reading
or for update,’’ and later ‘‘open for witing or for update.’

But ‘‘open for update’’ is not a defined term Should be struck

in both cases.

Accept ed.

27.8.1. 3:

basic_filebuf::is_open allegedly tests whether ‘‘the associated file
is available and open.’’ No definition exists for avai |l abl e.’

The term shoul d be struck

Still being considered.

27.8.1.3:

basic_fil ebuf::open Effects says the function fails if is_open()
is initially false. Should be if initially true.

Accept ed.

27.8.1.3:

basic_fil ebuf::open Effects says the function calls the default
constructor for basic_streanbuf. This is nonsense. Should say,
at nost, that it initializes the basic fil ebuf as needed, and
then only after it succeeds in opening the file.

Accept ed.

27.8.1.3:

Table 83 has a duplicate entry for file open node ‘‘in | out’’
Accept ed.

Renoved one entry.

27.8.1. 4:

filebuf::showmanyc (and several overriden virtual functions that
follow) have a Requires clause that says '‘is_open == true.’

The behavior of all these functions should be well defined
in that event, however. Typically, the functions all fail
The Requires clause should be struck in all cases.

Accept ed.

27.8.1. 4:

filebuf::showmnyc Effects says the function behaves the sane
as basi c_streanbuf::showmnyc.’’ The description adds not hing
and shoul d be struck

Editorial.

27.8.1. 4:
basic_fil ebuf::underfl ow effects shows argunents to convert as

“*st,frombuf, frombuf+FSI ZE, from end,to_buf, to buf+to_size, to_end .

st shoul d be declared as an object of type state type, and n should
be defined as the nunber of characters read into frombuf. Then the
argunents should be ‘*st, frombuf, frombuf + n, fromend, to_buf,
to_buf + TSIZE, to_end ’. Also, tenplate paraneter should be

‘“‘traits::state_type,’’ not ‘‘ios_traits::state type.’
Still being considered.
27.8.1. 4:

basic_fil ebuf::underflow is defined unequivocally as the function

->

that calls codecvt, but there are perfornmance advantages to having
this conversion actually performed in uflow If the specification
cannot be broadened sufficiently to allow either function to do

the translation, then uflow loses its last rationale for being
added in the first place. Either the extra | atitude should be
granted inplenmentors or uflow should be renmoved from basi c_streanbuf
and all its derivatives.

Still being considered.

27.8.1. 4.

basic_fil ebuf::pbackfail (traits::eof ()) used to return a val ue
other than eof () if the function succeeded in backing up the

i nput. Now the relevant Returns cl ause says the function returns
the metacharacter ¢, which is indistinguishable froma failure
return. This is an unapproved change. Should probably say the
function returns traits::not_eof(c).

Accept ed.

27.8.1. 4:

basic_fil ebuf:: pbackfail Notes now says ‘'‘if is_open() is false,
the function always fails.’’ This is an unapproved change.

The ol der wordi ng shoul d be restored.

Editori al
27.8.1. 4:
basi c_fil ebuf:: pbackfail Notes now says ‘‘the function does not
put back a character directly to the input sequence.’’ This is

an unapproved change and not in keeping with wi despread practice.
The ol der wordi ng shoul d be restored.
Edi tori al

27.8.1. 4:

basi c_fil ebuf:: pbackfail has a Default behavior clause.
Shoul d be struck.

Accept ed.

27.8.1. 4:

basic_fil ebuf::overflow effects shows argunents to convert as
“tst,b(),p(),end, buf, buf +BSI ZE, ebuf’*. st shoul d be declared as

an object of type state type. Then the argunents shoul d be

‘‘st, b, p, end, buf, buf + BSIZE, ebuf’’. Al so, tenplate paraneter

should be ‘‘traits::state_type,’’ not ‘‘ios_traits::state_type.’
Still being considered.
27.8.1. 4:

basic_fil ebuf::overflow doesn’'t say what it returns on success.
Should say it returns c.
Still being considered.

27.8.1. 4:
basic_fil ebuf::setbuf has no semantics. Needs to be suppli ed.
Still being considered.

27.8.1. 4:

basic_fil ebuf::seekoff Effects is an interesting exercise in creative
witing. It should sinply state that if the streamis opened as a
text file or has state-dependent conversions, the only pernissible
seeks are with zero offset relative to the beginning or current
position of the file. (How to determ ne that predicate is another
matter -- should state for codecvt that even a request to convert
zero characters will return noconv.) O herw se, behavior is largely
the sane as for basic_stringstream from whence the words should be
cri bbed. The problem of saving the streamstate in a traits::pos_type
obj ect renains unsolved. The primtives described for ios traits

are inadequate.

Still being considered.

->
->

->
->

->
->

27.8.1. 4:
basi c_fil ebuf::seekpos has no semantics. Needs to be supplied.
Still being considered.

27.8.1. 4:
basic_fil ebuf::sync has no semantics. Needs to be supplied.
Still being considered.

27.8.1. 4.

basic_fil ebuf::inmbue has silly semantics. Wether or not sync()
succeeds has little bearing on whether you can safely change

the wor ki ng codecvt facet. The nost sensible thing is to establish
this facet at construction. (Then pubi nbue and i nbue can be
scrubbed conpletely.) Next best is while is_open() is false.

(Then inbue can be scrubbed, since it has nothing to do.)

Next best is to permt any inbue that doesn’'t change the facet

or is at beginning of file. Next best is to permt change of facet
any tinme provided either the current or new facet does not nandate
st at e- dependent conversions. (See conments under seekoff.)

Still being considered.

27.8.1.7:
basi c_fil ebuf::rdbuf should not have explicit qualifier.
Accept ed.

27.8.1.9:

basi c_of stream : basi c_of strean(const char *s, opennode node = out)
has wong default second argunment. It should be ‘out | trunc’, the
same as for basic_ofstream:open (in the definition at |east).
Still being considered.

27.8.1. 10:

basi c_of stream : open(const char *s, opennode node = out)

has wong default second argument. It should be ‘out | trunc’, the
same as for basic_ofstream:open in the definition

Still being considered.

27.8. 2:

<cstdi 0> synopsis has two copies of tnpfile and vprintf,
no vfprintf or putchar.

Accept ed.

27. 8. 2:

<cwchar> summary should also list the type wchar _t. Aside fromthe
addition of the (inconplete) type struct tm this table 84 is
identical to table 44 in 21.2. It is not clear what purpose either
table serves; it is less clear what purpose is served by repeating
the table.

Accept ed.

Tabl e has been renoved.

27. 8. 2:

See Also reference for <wchar> should be 7.13.2, not 4.6.2.
Accept ed.

Tabl e has been renoved.

D. 2:

Functions overl oaded on io_state, open_node, and seek dir ‘‘cal
the correspondi ng menber function.’’ But no hint is given as to
what constitutes ‘‘correspondence.’

Rej ect ed.

We don’t understand the comment.

D.3.1.3:
strstreanbuf::overfl ow has numerous references to ‘‘eof()’’, which

->
->

->
->

->
->

->

21

->
->
->

->

->

->

no | onger exists. Al should be changed to EOF.

ECF,

Accept ed.
See D.6.1.3 [depr.strstreanbuf.virtuals].
D. 3.1.3:
strstreanbuf::overflow says it returns '‘(char)c’’ sonetines,
but this can pun with EOF if char has a signed representation.
More accurate to say it returns (unsigned char)c.
Accept ed.
See D.6.1.3 [depr.strstreanbuf.virtuals].
D. 3.1.3:
strstreanbuf:: pbackfail says it returns ‘‘(char)c’’ sometines,
but this can pun with EOF if char has a signed representation.
More accurate to say it returns (unsigned char)c.
Accept ed.
D. 3.1.3:
strstreanbuf:: pbackfail says it returns ‘‘(char)c’’ when c ==
but this can pun with EOF if char has a signed representation.
More accurate to say it returns sonething other than ECF.
Accept ed.
D. 3.1.3:
strstreanbuf:: pbackfail twice says it returns EOF to indicate
failure. Once is enough.
Accept ed.
See D.6.1.3 [depr.strstreanbuf.virtuals].
D. 3.1.3:
strstreanbuf::setbuf has a Default behavior clause, which is not
appropriate for a derived streambuffer. It also adds nothing to
the definition in the base class. The entire description should
be struck.
Still being considered.
- (conti nued)
Addi tional comrents from Wsl4
Recei ved by emil
emai | address: pjp@l auger.com
Was conment T25 in the post-Mnterey mailing docunent.
3.2-8
The acronym ‘* ODR ' has not been defined. Also, it doesn't
make sense when expanded: ‘‘one definition rule rule'’.
1st sentence: Accepted.
See 3. 2[basic. def. odr]
2nd sentence: Editorial.
3.7.3.2-5
Footnote #20 refers to ‘‘architectures’’. Oher places
refer to ‘‘machines’’. They should all refer to
“‘inplenentations’’.
Editorial.
3.8
It is not clear what object ‘‘use’’ or ‘‘reuse’’ is.
Still under consideration.
3.8-2
The acronym ‘' *POD ' has not been defined. 1In general, each
section should have '‘forward references’’, like the C

St andar d.
Editori al .

->

->
->
->
->

->
->
->
->
->
->

->

->

->

->

->

->

->

->

3.8-3
Awkward wording: ‘‘In particular, except as noted'’
Editorial.

3.9-2
How can | tell that the ‘‘copy operation is well-defined '?
It is not clear what ‘‘well-defined '’ nmeans here or if | can
test for it.
Editorial.
The result of copying an object into an array of characters will
be described w thout discussing what a "well-defined copy operation
neans.

3.9-4 The ‘*value’’ of an object of type T is not
necessarily based upon its bit represention, especially when
the class is a handle to other data. The ‘‘value’’ in this
case woul d depend upon how the "==" operator is overl oaded.
Even if its '‘‘representation value'’ is sonehow defi ned,
what purpose does it serve? Were else is this used in the
draft?
Editorial.
The val ue representation of a scalar type is based on its bit
representation. The concept of value representation is necessary
to describe the correspondence between the representation of signed
and unsigned integral types that an inplenmentation nust support.
See 3.9.1 [basic.fundanental]

3.9.1-1
Renove ‘‘there are several fundanental types’’.
Editorial.

3.9.1-2
Use different wording than ‘‘take on'’.
Editorial.

3.9.1-4

Don't refer to ‘‘machine architecture’’. See C Standard
wor di ng.

Editorial .

3.9.1-6

Change

wor di ng.
Editorial .

‘laws of arithnetic nodulo 2N’ to C Standard

3.9.1-8
Reword * ‘al t hough val ues of type bool generally behave
"Editorial.

3.9.1-8
Reword * ‘successfully be stored' .
Editorial.

3.9.2-1

Reword ‘‘There is a conceptually infinite ..

wor ds conceptually’’ and ‘‘infinite .
Editorial.

Renove t he

3.9.3-1
The definition of "volatile"” is missing. It isn't in
subclause 1.8 or 7.1.5.1. See the C definition: ‘‘An object
that has volatile-qualified type nmay be nodified in ways
unknown to the inplementation ..."’

It is defined in 1.8 para 7.

3.9.83-5
Change ‘‘In this docunment’’ to ‘‘In this Internationa
St andard’’

-> Editorial

3.10-2
Footnote #30: Clarify **... in some sense refer to an
obj ect’’.

-> Editorial

4.1-1
Reword ‘‘necessitates ... is ill-forned’ to use
or ‘‘shall not’’.

-> Rej ect ed.

-> Ot her comments indicate that the other way around is preferred.

shal |’

4.1-1
Footnote #31. Need proper reference to Standard C
-> Editorial

4.3-1
Footnote #32. Reword ‘‘there is no way ..
-> Editorial

4.5-1
Rewor d can’’ with ‘‘shall’.
-> Editorial

4.4-4
The sentence ‘‘That is, the nmenber aspect
f oot not e.

-> Editorial

shoul d be a

4.5-2
Reword ‘‘can’’ with ‘‘shall’.
-> Editorial

4.5-3
Rewor d can’’ with “‘shall’.
-> Editori al

4.5-3
Footnote #34: Reword ‘‘If the bit-field is larger yet, ..."’
using ‘‘shall’’ and ‘‘shall not’’. If this is a constraint,

it shouldn’t be a footnote.
-> Editori al

4.5-4
Reword ‘‘can’’ with ‘‘shall’.
-> Editorial

4.7-2
What is the difference here between a note and a footnote?
Thi s should be a footnote.

-> Editori al

5.2.2-7
A bit-field is not a type.
-> Editorial
5.2.2-7
Change ‘‘unsigned’’ to ‘‘unsigned int’’ ‘‘int, unsigned int,

-> Editori al

5.2.6-1

Reword *‘... shall not cast away constness’’ in nore precise

terms. See 5.2.9-2"s reference to 5.2.10.
-> Rej ect ed.
-> Cast away constness is already defined in 5.2.10 and 5.2.6-1 refers
->to 5.2.10.

5.2.7-1

Foot note #43: Does "*(p)" neet this requirenent?
-> Help: Bill Gbbons: | have in ny note fromthe Mnterey neeting
-> that the answer to this question is "no". Wy?

5.2.7-1

Shouldn’t ‘‘then the pointer shall either be zero’ be

‘“‘then the pointer shall either be the null pointer value '?
-> Editorial

5.2.8-1

Reword *‘... shall not cast away constness’’ in nore precise

terns. See 5.2.9-2"s reference to 5.2.10.
-> Rej ect ed.
-> Cast away constness is already defined in 5.2.10 and 5.2.6-1 refers
->to 5.2.10.

5.2.10
This section is hard to understand, especially the rules
defining casting away constness.

-> Editorial

5.2.10-4
Does ‘‘inplicit conversion’’ here refer to subclause 4. 10,
poi nter conversion?

-> Editorial

5.2.10-7
The ‘‘[Note:’’ doesn’'t have a closing ‘] Thi s appears
to be a formatting issue throughout the docunent.

-> Editorial

5.2.10-7
Where are
-> Editori al

multi-level’ and ‘‘mixed object’’ defined?

5.3.1-2
How do the ‘‘inplicit conversions’’' here relate to the
““inmplicit conversions’’' of 4.10 or 5.2.10? The term
““inmplicit conversion'’ should be defined explicitly.
-> Editorial
-> 1t refer to inplicit conversions defined in 4.3.
-> See beginning of clause 4 [conv] for definition of inplicit
-> conversi on.

5.8.5-2
What is ‘‘(_class.conv,fct_)’ '?
-> Editorial

5.7-6

How is C conpatibility maintained if a different header is

required for C++ for "ptrdiff_t"?
-> Accepted
-> Annex Dis normative. Subclause D.4 makes it clear that <stddef.h>
->1is a required header in a conform ng C++ inplementation and has the
-> correct semantics for this issue

5.8-1
Way isn’'t the C wording used here, especially the semantics
for unsigned integers?

-> Editori al

5.9-2
Change ‘‘ The usual arithnmetic conversions’’ to ‘‘The
standard integral pronotions (4.5)'".

-> Rej ect ed.

-> This doesn’t cover operands of type |ong appropriately.

5.10-1
It is not clear have the sane semantic restrictions
conversions’’ what this points to. The wording should be
repeated or the reference to the associated text should be
cl earer.

-> Rej ect ed.

-> The conmittee found that the wordi ng provi ded was good enough

5.11-1

See 5.9-2 above on
-> Rej ect ed.
-> This doesn’t cover operands of type |ong appropriately.

usual arithnmetic conversions’’.

5.12-1

See 5.9-2 above on
-> Rej ect ed.
-> This doesn’t cover operands of type |ong appropriately.

usual arithnmetic conversions’’.

5.13-1

See 5.9-2 above on
-> Rej ect ed.
-> This doesn’t cover operands of type |ong appropriately.

usual arithmetic conversions’’.

5.16-1
What was the grammar changed from C? The expression after
the col on should be *‘conditional -expression’’.

-> Rej ect ed.

-> This is required to support "throw expression”

5.16-2
If both the second and third expression are throw
expressions, then what it the type of the result? According
to 15-1, the resultant type of the throw expression is
"void". Thus, the resultant type of "?:" is "void". This
shoul d be made cl ear here.

-> Editorial

5.17-4
Change ‘‘the user’’ to ‘‘the programi’. Change all other
uses of ‘‘the user’’ to sonmething else in the rest of the
draft.

-> Editorial

7.1.2-2
Change ‘‘hint’’ wording to use Cwrding simlar to
"register" keyword.

-> Editorial

7.1.3-5

Reword ** The typedef-name is still only a synonym for
the dunmmy name and shall not be used where a true class nanme
is required’. Either ‘‘dumy nane’’ should be defined or

renoved in this paragraph (used several tinmes). What is a
‘“‘true class nane’’? |If the dunmy nane is not specified,
why do | care about it for ‘‘linkage purposes’’?

-> Editorial

7.1.5.1-3

The draft says ‘‘CVv-qualifiers are supported by the type
system so that they cannot be subverted wi thout casting'’
but it doesn’t specify that the behavior is undefined (C
says it’s undefined).

-> Rej ect ed.

-> Paragraph 4 already says this.

7.1.5.1-7
This should not be a note, but part of the standard. The
same wordi ng should be extracted fromthe C Standard.

-> Rej ect ed.

-> The normative text is in 1.8 [intro.execution].

7.2-1
Reword or renmove ‘‘... not gratuitously larger than int’'’.
If it’s inplenentation-defined, then say so.

-> Editorial

7.2-6
The possibility that the conpiler generates bit fields for
enunerators neans that it would not be object, i.e., not

addressible. Since it is inpossible to determ ne whether or
not the address is taken (the "enunm nmnight have its address
taken in sone other translation unit), having the conpiler
decide bit-field or not won’t work. If "enunmt bit fields
are to be supported, they should use sone *obvi ous* synt ax.
Also, inplicit bit fields would be inconpatible with C
progr ans.

-> Editorial

7.3.1.2-1
I f an unnaned nanespace has a unique identifier that cannot
be determ ned and cannot be linked to (even if there is
external linkage -- see footnote 54), then an unnaned
nanespace is equivalent to "static" at file scope. The
draft shoul d change the wording to be the equival ent of
"static" at file scope (a feature all |inkers can provide)
rat her than the requirenent that a uni que nane be created
(difficult for linkers and *very* difficult for externally
devel oped libraries). |If an inplenentation creates
somet hing that | cannot detect then it doesn't exist.

-> Editorial

7.3.3-6
Renove ‘... (as ever)'’.
-> Editorial

7.3.4-4
What is a ‘‘using-directive lattice’’? Were is it defined?
-> Editorial

7.5-3
If a function has nore than one |inkage specification (say
in different translation units) a diagnostic is required.
However, the conpiler and/or |inker may not be able to
detect this even with type-safe linking (type-safe |inking
doesn’'t inply that the function call nechanisnms are the
sane).

-> Editorial

7.5-6

Reword ‘‘ There is no way ...
-> Editorial

Change: ‘‘FORTRAN ' is now properly spelled ‘' Fortran’

according to the Fortran Standard. It would be better if

C++ specified that the linkage string is case insensitive

and is in the | SO 646 subset. Since the |inkage is al

i mpl enent ati on-defi ned anyway, the linker (and the conpiler)

will know the true way (possibly, case-sensitive) of

spel ling the |inkage nane.
-> Editorial
-> The WP was changed to indicate that it is inplenentation-defined
-> which string-literal can be used in a |inkage specification and
-> whether or not the string-literal is case sensitive.

8-3

Footnote 55: Reword '‘ A declaration with severa

declarations is usually equivalent’’ to renove the word

“‘usual ly' .
-> Rej ect ed.
-> "Usual ly" is used because there are exceptions where this is not the
-> case. The exceptions are later listed in the footnote.

8.2-1
Reword ‘‘In that context, it surfaces ..
‘‘surfaces’’.

-> Editori al

to renove

8.2-1
Renove ‘‘Just as for statenents’’. The reference to which
section is unclear. The level of semantics to drag in are
not specified.

-> Editorial

8.2-2
Rewor d can occur in nmany different contexts ..
renove the word ‘‘ many’’

-> Editorial

8.2-3
Nunmber the 4 exanpl es
-> Rej ect ed.
-> \When the draft provides nultiple consecutive exanples, there are not

-> nunbered. It seens inappropriate to do it here.
8.3-2
Change ‘‘inductive’’ to ‘‘recursive ’.

-> Editorial

8.3.1-3
Reword *“volatile specifiers are handled sinmilarly.’’
Simlar to what?

-> Editorial

8.3.2-4
Reword *“In particular, null references are prohibited; no
diagnostic is required.’’. Wat does ‘‘prohibited ' nean?

Do you nean undefined’’ here?

-> Editori al

8.3.4-1

Typo: ‘', T’ ==>*“'T,”", **. T =>""'T.
-> Rej ect ed.
-> This is a style the editor has deliberately chosen and that is
-> consi stent throughout the draft.

8.3.4-2
Repl ace with C Standard wording. The C wording is clearer
and shorter: ‘‘An array type describes a contiguously

al | ocated nonenpty set of objects with a particul ar nmenber

object type, called the elenent type.”” (there is a footnote
attached that explains inconplete types are disall owed).
-> Editorial

8.3.4-3
Reword *‘ When several array of specifications are adjacent’
to remove or define the word ‘‘ adjacent’’

-> Editorial

8.3.4-4

Reword “‘... (say, N ...’" to renove the ‘‘say, N’
Possibly, start the sentence ‘‘If Nis the nunber of initial
el ement s, Y

-> Editorial

8.3.5-2
I's using the C "<cstdarg>" the sanme as "<stdarg.h>"? |f
not, then the code will be inconpatible.

-> Annex Dis normative. Subclause D. 4 makes it clear that <stdarg.h>
->1is a required header in a conform ng C++ inplenentation and has the
-> correct semantics for this issue.

8.3.5-4
Renmove ‘‘ Functions shall not return arrays ... [to the end
of the paragraph]’’. This restriction has been stated
el sewhere
-> Rej ect ed.

8.3.5-5
Renmove this paragraph. It has been stated el sewhere
-> Rej ect ed.

8.3.6-6
Change ‘‘out-of-line function'’ to ‘‘non-inline function'’
-> Editorial

8.3.6-9

Previously, the order of evaluation of function argunents
was ‘‘unspecified’’. Here it's ‘‘inplenentation-defined .
Wiich is it?

-> Editorial
-> unspecified, it is.

8.5-6

Need forward reference to ‘*POD’. It has not yet been
defined. The restriction on arrays has been stated

el sewhere

-> Editori al

18.1-3

If the C standard header "<stddef.h>" is used, do | get the

same result as including "<cstddef>"? Subclause D.1 refers

to conpatibility, but this isn't clear. Al so, this

par agraph should refer to D. 1.
-> Accept ed.
-> Annex D is normative. Subclause D.4 nakes it clear that <stddef.h>
->1is a required header in a conformi ng C++ inplenentation and has the
-> correct semantics for this issue

D.1-1

The nanes should be the sane for C headers in C++. There
shoul d be no renaning. This breaks C code to renane them
especi ally when both shoul d behave the same. Rather than
the nane "cstdlib", is should be "stdlib.h". Since every C
compi l er already supports this, C++ can't claimdefective
linkers, filesystenms, and so on. This is a gratuitous

di fference that just breaks working code.
-> Accepted
-> See above (18.1-3).

22- Comments from Bob Kline
Recei ved by email
emai | address: bob_kline@tream com
Was conment T26 in the post-Mnterey nailing docunent.

2.9.2 [lex.ccon]: A change has been nade to octal escape sequences,
whi ch until now has al ways been a backsl ash foll owed by one, two, or
three octal digits. The latest version appears to place no limt on
the nunber of digits which can make up an octal escape sequence.

-> Accepted

5.3.1 [expr.unary.op]: The sentence following the third exanple
("Neither does qualified-id,") is outside the square brackets
encl osi ng the exanple, but continues the thought begun within the
brackets. Text containing bracketed portions should read intelligibly
if the bracketed material is onitted.

-> Editorial

5.3.5 [expr.delete]: Footnote 46: "... deleted using a point "
Should read "... deleted using a pointer "

-> Editorial
7.1.5.1 [dcl.type.cv] Paragraph 2: "... for a const object of type
T, if Tis aclass with a user-declared default constructor, the
constructor for T is called," This |language inplies that for the

foll owi ng code fragnent

class T {
publi c:
T();
T(int);
. c
const T t(1);

the default constructor would be called for t. Surely this is not
what the conmittee intended.
-> Editorial

7.1.5.1 [dcl.type.cv]: In paragraph 6 the semcolon is nissing after
definition of class V.
-> Editorial

8.5.1 [dcl.init.aggr]: Two pointers to footnote 62 appear: one in
paragraph 1 and the other in paragraph 4. Only the one in paragraph 4
seens appropriate. |Is there a footnote m ssing for paragraph 1?

-> Editorial

9.3 [cl ass. scope0]: Paragraph 1, rule 2: use the sanme font for Sin
bot h pl aces.
-> Editorial

10.3 [class.virtual]: Paragraph 4: "Even if destructors are not
inherited, a destructor in a derived class overrides a base class
destructor declared virtual;" This should read "Even though

destructors
-> Editorial

12.4 [class.dtor]: Paragraph 10 gi ves exanpl es of placenent of an
object of class X at a buffer created as

->

->
->
->

->
->
->

->
->
->
->
->
->

->

static char buf[sizeof (X)];

Is the alignment of a static array of char guaranteed to satisfy the
al i gnment requirenents of an arbitrary class X?
Still under discussion

12.7 [class.cdtor]: Exanple in paragraph 2: why is ‘D((C*)this,
comrent ed out ?

Because there is already a constructor for D specified in the
ctor-initializer for E. The conment shows how the first constructor
call could be rewitten to give the code well-defined behavior

21.1.1.4 [lib.string.cons]: Wy do sonme constructor specifications

i ndi cate what is thrown under exceptional conditions and others not?
Al so, for basic_string(const chrT*), shouldn’t length error be thrown
if n>= npos (draft says 'if n == npos’)? Also, signatures given in
the tables do not always match the prototypes for the corresponding
constructors; (e.g.: table 42: basic_string(size_type, charT, ...) vs.
(charT, size_type); and table 43 uses identifiers instead of the type
nanes). Also, under table 43, "Notes: see Table __ , ...": the table
reference is inconplete. As a general conment, sone of the library
chapters appear to have received nuch | ess thorough editorial scrutiny
than the chapters for the | anguage proper

Since npos is the largest possible value for size type, it is not
possible for for any n to have a value: n > npos. Signatures in
tables are editorial

21.1.1.6 [lib.string.capacity]: "size type max_size() const; Returns:
The maxi num size of the string." This description does not convey
enough information. Does this mean the maxi mum val ue that can be
given to resize()? Does it reflect space for a term nating NUL? Does
it reflect the anount of space currently allocated? (If so, how woul d
this differ fromcapacity()?)

The description is nade as precisely as it can be nade. The nenber

max_si ze() can be made to return the maxi num size of a string as

determned by the inplementation. It is not necessarily the nmaximum
val ue that can be given to resize(). It does not necessarily

reflect space for a termnating NUL. Nor does it necessarily

reflect the anmount of space currently allocated.

21.1.1.10. 1:
tenpl at e<cl ass charT, class traits, class Allocator>
basi c_string<charT,traits, Al |l ocat or>
operator+(const basic_string<charT,traits, All ocator>& | hs,
const basic_string<charT,traits, All ocator>& rhs);
Ret urns | hs. append(rhs).

If you |l ook back as 21.1.1.8.2, basic_string::append, you see that
basic_string::append() is a non-const nenber function, which nmeans
that it can’t be used to inplenment operator+(), for which lhs is a
const object. It wouldn't nake sense anyway, because that woul d
duplicate the functionality of basic_string::operator+= (see
21.1.1.8.1). Don’'t we want operator+ to create an entirely new
obj ect, not just append to | hs?

Accept ed.

27.1.1 [lib.iostreans.definitions]: Paragraph 1, last entry: "A

repositional stream can seek to only the position where we

previously encountered. On the other hand, an arbitrary-positiona

stream can seek to any position within the length of the stream

Every arbitrary-positional streamis repositional."

- The comua after "repositional streant needs to be del eted.

- The third sentence contradicts the first as worded

- The colloquial and awkward tone ("where we previously encountered")
is inconsistent with the nore inpersonal and precise | anguage of
the rest of the standard.

-> Editori al
27.1.2 [lib.iostreans.type.reqnts]: Last sentence: "
the character container class."
character container class."

-> Editori al

expects to
should read "... expects of the

27.1.2.1 [lib.iostreans.char.t]: "provides the definitions comon
between ..." should read "provides the definitions common to"
-> Accepted
-> Now it says ‘‘The collection of these functions can be regarded as
-> the collection of the common definitions for the inplementation of
-> the character container class’’

27.1.2.3 [lib.iostreans.of f.t]: footnote 207: "It is usually a
synonym for one of the signed basic integral types whose
representation at least as many bits as type long." Should read "..
whose representation is at least as many bits as type long."

-> Editorial

27.1.2.3 [lib.iostreans.of f.t]: Paragraph 4: "[Type OFF T is
clonvertible to type POS T. But no validity of the resulting POS T
val ue is ensured, whether or not the OFF_T value is valid." O what
use is the conversion, then?

-> Still being considered.

27.1.2.4 [lib.iostreans. pos.t]: Paragraph 3's sentence is awkwardly
worded ("... previous position previously obtained') and needs to be
conpl et ed.

-> Accepted

-> Now it says ‘*Wth a streambuffer for a repositional stream

-> (but not an arbitrary-positional strean), a C++ program can either

-> obtain the current position of the stream buffer or specify a position

-> previously obtained .

27.1.2.4 [lib.iostreanms.pos.t]: table 66: first row has assertion

"p == P(i)" but p does not appear in the expression for that row
al so, that row has the note "a destructor is assunmed" -- what does
this nean?

-> Still being considered.

27.4.2.2 [lib.ios.traits.val ues]:

"int_type not_eof (char_type c);

Returns: a value other than the end-of-file, even if ¢ == eof ().

Notes: It is used in basic_streanbuf<charT,traits>::overflow).

Returns: int_type(c) if cl=eof()."

Why are the two "Returns:" sections separated? The description of
basi c_streanbuf<charT,traits>::overflow() sheds no light on the use of
this function. Can we have a | ess oblique expl anation?

-> Accepted

-> The two "Returns:" sections have been nerged together

-> The function traits::not_eof () is used in two places, in overrides

-> of overflow and pbackfail. |If you call these functions wth

-> paraneter traits::eof (), the function returns traits::not_eof (

-> paranmeter) to indicate success (allows to differentiate from

-> failure in which case the functions return traits::eof ()).

27.4.2.4 [lib.ios.traits.convert]:
"state_type get_state(pos_type pos);
Returns: 0."

Can we get an expl anation?
-> Accepted
-> The "Returns:" sections says how.
-> Returns: A ’'state_type’ value which represents the conversion state

->

->

->
->
->
->
->
->
->
->

->

->

->

->

->

->

in the object ’'pos’

27.4.3.2 [lib.fntflags.state]:

"int width() const;

Returns: The field width (nunber of characters) to generate on certain
out put conversions."

Shoul d read "Returns: The minimumfield width"

Accept ed.

27.4.3.4 [lib.ios.base.storage]:
"l ong& iword(int idx);
Effects: If iarray is a null pointer, allocates an array of int

Way not an array of long? Also, "Notes: After a subsequent call to
iword(int) for the same object, the earlier return value nmay no | onger
be valid." This note (and the footnote acconpanying it) appear to
inmply that it would be inpossible to rely on the use of this function
to store a value in the array, then come back to read it with a second
call to the function.

The Effects: clause has been changed, to say: ‘‘If iarray is a nul
pointer, allocates an array of long of unspecified size ...’ ".
What the WP says is: ‘‘The reference returned may becone invalid

after another call to the object’s iword nmenber with a different index,
after a call to its copyfnt menber, or when the objects is destroyed ’.
But if you call again the function with the sane index, you will get a
new reference, which will point at the sane value (except in the case
where the object is destroyed).

27.4.3.5 [lib.ios.base.cons]: In table 72, "rdstate() [returns]
goodbit if sb is not a null pointer, otherw se badbit." Were is ‘sb
expl ained? Also, the fonts in this table need to be used

consi stently.

Editorial.
27.5.1 [lib.streanbuf.reqts]: Paragraph 3, 3rd constraint: "If xnext
is not a null pointer and xbeg < xnext for an input sequence, then a
put back position is available. |In this case, xnext[-1] shall have a

defined value and is the next (preceding) elenent to store a character
that is put back into the input sequence." The wording of the |ast
sentence is fuzzy.

Editorial.

27.5.2.3.1 [lib.streanbuf.get.area]:
"char _type* egptr() const;
Returns: The end pointer for the output sequence."”

Should be "... pointer for the input sequence."
Accept ed.

27.5.2.4.1 [lib.streanbuf.virt.local es]: "Between invocations of this
function a class derived from streanbuf can safely cache results of
calls to locale functions and to nenbers of facets so obtained." Does
this mean that changes in locale can be effectively ignored by the
st r eanbuf ?

Still being considered.

27.6 [lib.iostreamformat]: under "Header <iomani p> synopsis:
‘typedef ? smanip;’ -- Wiat does this nean?
Has been renoved.

27.6.1.2 Formatted input: Wat has happened to the input operators

for unsigned char?
2?2?77

27.6.1.1.2 [lib.istreamprefix]: in paragraph 1. "Oherwise it calls

setstate(failbit) (which may throw ios_base::failure (27.4.4.3)) and
returns false.”

How about "... and (if an exception is not thrown) returns false."
-> Editorial

27.6.1.2.1 [lib.istreamformatted.reqnts]: Paragraph 3 seens to inply
that if extraction of a floating-point value froma stream encounters
a val ue which has nore precision than can be held in a float, and
operator>>(float& is used, the fail bit will be set. WII this not
be an unexpected outconme for npbst programmers?

-> Accepted

-> There are now seperate get functions (in |ocale numget facet)

-> for float and doubl e.

27.6.1.2.1 [lib.istreamformatted. reqnts]: Paragraph 5: "In case the

converting result is a value of either an integral type ... or a
float type ... perfornmng to parse and convert the result depend on
the imbued | ocale object.” This is really French converted to English
by translation software, right? :->}

-> Still being considered.

27.6.1.2.2 [lib.istream:extractors]: Paragraph 2: "If the function
stores no characters, it calls setstate(failbit), which may throw
i os_base::failure (27.4.4.3). 1In any case, it then stores a nul
character" How can it store anything if an exception is thrown?
C++ does not use the resunption nodel for exception handling.
Di fferent |anguage than "In any case" is needed here.

-> Still being considered.

27.6.1.2.2 [lib.istream:extractors]: Paragraph 2:

"basi c_i streanxcharT, traits>& operator>>(char_type& c);

Effects: Extracts a character, if one is available, and stores it in c.
O herwi se, the function calls setstate(failbit)."

Not eofbit?
-> Still being considered.

27.6.1.2.2 [lib.istream:extractors]: Paragraph 3:

"basi c_i streanxchar T, traits>& operator>>(short& n);

Ef fects: Converts a signed short integer, if one is available, and
stores it inn."

Why does the docunent identify what happens when a character is not
avai |l abl e (see paragraph 2), but not when a nunber is not avail abl e?

-> Editorial

27.6.1.4 [lib.istreammanip]: " saves a copy of is.fntflags
Should this not read "... saves a copy of is.flags"?

-> Accepted

-> saves a copy of is.flags()

27.6.2.4.2 [lib.ostreaminserters]:

"basi c_ostreanxchar T, traits>& operator<<(unsigned |ong n);

Ef fects: Converts the unsigned long integer n with the integra
convertsion specified preceded by |."

Should this be "... preceded by ul."?
-> Still being considered.

27.7 [lib.string.streans]: table 77 ("Header <cstdlib> synopsis")
appears to be out of place. Furthernore, the top row of the table
"Type ... Nane(s)" doesn’'t seemto match the data in the table, which
only contai ns nanmes, but no types.

-> Not there anynore, has been renoved.

27.8.1 [lib.fstreans], paragraph 2: the type nane FILE is a
synonym for the type FILE " This seens like an odd sort of synonym
doesn’t it? Also, the last sentence of this subsection, "Because of
necessity of the conversion between the external source/sink streams
and wi de character sequences." is inconplete.

-> Still being considered.

27.8.1.3 [lib.fil ebuf. menbers]:
"bool is_open() const;
Returns: true if the associated file is available and open

basic_fil ebuf <charT, traits>* open(const char * s, ios_base:: opennode

node) ;
Effects: If is open() == true, returns a null pointer. Qherw se, calls
basi c_streanbuf <charT, traits>:: basic_streanbuf() (27.5.2.1). It then

opens a file, if possible, whose nane is the NTBS s ("as if" by
calling ::fopen(s, nodstr))."

Why does open() only open the file if is_open() is not already true?
At best, the sequencing is confused here.
-> |f is_open() is true, there is already one file attached
->to the basic fil ebuf object. Therefore you need to call the nenber
-> function close() before trying to open another file with the sane
-> basic_fil ebuf object.

27.8.1.4 [lib.filebuf.virtuals]: No description is given for
setbuf (char _type *, int). Al so, descriptions for seekpos(), sync(),
and i nmbue() are also missing or hopelessly junbled (e.g., the
description of inmbue(const |ocale& |oc) talks only about calling
sync()) .

-> Still being considered.

General conmment: Initialisnms (POD, for exanple), should be expanded
at the location of their first occurrence, or (better) placed in a
gl ossary, or (best) both.

-> Editorial

This is probably too late to nake it into the standard (unless the
process rolls into further extensive revisions and balloting anyway,
which -- judging fromthe state of the Input/Qutput library section --
seens likely :->}), but I'Il point it out it all the same. If we
really want prograns to use the iostreans package instead of the FILE
I/Ocalls, the iostreans package should provide as a mninumthe sane
facilities as the older library. Specifically, the standard CI1/0O
package provides a convenient nmethod for controlling the nmaxi mum
nunber of characters to wite in formatted I/Q, e.g.

fprintf(fp, "FONT NAME: % 16s\n", font_desc.font _nane);

This handl es the case of a structure which has enough space for a
string which will not necessarily be NUL-terninated if the maxinmm
nunber of characters are stored for the string (a common enough
situation when one is manipul ating data structures witten by soneone
el se’s software).

What are the reasons for |eaving this out of the iostreans package?
Al'so (while on the topic of rounding out iostreams to match what the
competition can do), how difficult would it be to provide the ability
to control the (m ninmmn nunber of digits in the exponent for a
formatted floating point nunber witten using scientific notation (as,
for exanple, one can do in Ada)?

-> Rejected, request for an extension.

23- Comment from Donald Killen / G eenleaf Software Inc
Recei ved by enai
emai | address: dkill en@ adf w. net
Was comment T10 in the post-Mnterey nailing docunent.
(al so unregi stered comrent Ul)

Al'l conpiler vendors should use the same al gorithmfor nmangling
names.

-> Rejected.
-> This constrains the inplenmentations too mnuch.

24- Comments from Herb Sutter / Connected (bject Sol utions
Recei ved by enail
emai | address: herbs@nterl og.com
Was comment T27 in the post-Mnterey nailing docunent.
(al so unregi stered comment Ul1)

Proposed current _cl ass keyword
-> Rej ected, request for an extension.

25- Comments from Ni gel Chapnman
Recei ved by email
emai | address: ???
Was conment T28 in the post-Mnterey nailing docunent.

I wite to draw your attention to an inconsistency of presentation in
the C++ draft standard. |In section 12.4, paragraph 9, we read
‘‘Destructors are invoked inplicitly (1) when an automatic variable or
tenporary object goes out of scope’’. However, in section 3 the
authors go to sone length to define a scope as a ‘‘portion of program
text’'. It only nakes sense to refer to where a name goes out of
scope, not when an object does. This sentence should presunably be
rewitten in terms of the concepts of storage duration and lifetine,
defined in sections 3.7 and 3.8. Interestingly, although the
formulation in ternms of scope appears in the ARM a correct version is
given in ‘The C++ Programmi ng Language, 2nd edition’’ p170.

-> Editorial

26- Comments from David Qualls
Recei ved by enai
emai | address: dqual |l s@cdi s01.tinker.af.nil
Was conment T30 in the post-Mnterey nailing docunent.

26.1

Subj ect : Preprocessor, nmcro expansi on, escape sequences

Quest i on: Are (character) escape sequences given their neaning
during macro expansion? | don't feel the book is
clear on this issue.

Exanpl e: #define renove tail(statenent) statenent ## \b\b\b
renove_tail (printf("stuff");) %l\n", int_var);
Does this work as expected (per the standard)? That is,
does it expand (per the standard) to
printf("stuff%l\n", int_var);

Conment s: The couple of conpilers |I've tested do not interpret it

this way. Enabling the pre processor this way woul d
greatly increase it’'s capability. W would (and this
woul d be ni ce ANYWAY) al so need an escape sequence for a

simple forward space. |In the exanple above, we can’t
separate the "stuff" fromthe % without it. Note: | ran
squarely into this question while attenpting to wite an
ANSI C conform ng preprocessor: the book was not clear.

-> Rej ect ed.

-> W21 has, in general, preferred to make (al nost) no changes to the
-> preprocessor from|SO C, and has nade no changes in this area

-> The exanple provided is not valid in C or C++:

->
-> renove_tail (printf("stuff");) %\n", int_var);

-> printf("stuff"); ## \b\b\b %\ n", int_var);
-> e e - -

-> Tries to catenate ; wth \

-> Doesn’'t forma valid pp-token
-> See 16.3.3 [cpp.concat].

26.2
Subj ect : Preprocessor, line continuation with '//’ conments
Questi on: The book is not explicitly clear as to how the // coments,
and the "\"’\n’ interact. Does the // coment terninate
with the '\’ <new i ne> conbination or not.
Exanpl e: #define coment _question(arg) \
global _varl = arg %7 // this won't work with \
global _var2 =arg / 7 // ny primary conpil er!
#define sane_question(arg) \
global _varl = arg %7 /* this DOES work, but */ \
global _var2 = arg/ 7 /* is not nestable. */
/* History: an earlier version of ’'sane_question
#define sane_question(arg) \
global _varl = arg %6 /* OOP'S. This really */ \
global _var2 = arg / 6 /* goes afoul! Nesting NOT ALLOAED! */
*/
Conment s: Based on the exanpl es above, it’'s obvious to nme that

during preprocessing, conmment termination should occur
BEFORE | i ne concatenation. Having |line concatenation
occur before comrent term nation | eaves no way to enbed
comments within macros that mght |ater need to be
commrented out. The book says that |ine concatenation
precedes conment renoval, but r.2.2 SEEMS TO SAY that //
conments should terninate on the PHYSICAL |ine they appear
on, not the extended line (sonme interpretive reading
between the lines there). Again, | first ran into this
while trying to make ny own ANSI preprocessor work with
the // style corments. Please nmake this rule explicit.

-> Rej ect ed.
-> This was discussed at great length. The way to enbed coments into

-> mlti-line macros is to use the /* style of conment.
26. 3
Subj ect : Preprocessor, possible ANSI C extension to allow enpty args
Quest i on: If C++ is to remain a superset of C, then would it not be

wi se to incorporate the features which the next revision of
ANSI Cis likely to incorporate?

Comment s: One possible new addition to Cwill be the ability for the
preprocessor to pernmit enpty paraneters within macro calls.

->
->
->
->
->
->

Rej ect ed.

Breaks C conpatibility.
Thi s subject has been discussed at great length in WGL4 regardi ng
the 5-year revision of C, and no decision has been nmade by WGl4.

Currently,

an inplenmentation is at liberty to support the feature,

but not required to do so.

26.4
Subj ect :
Not e:

Comment ary:

#012#
Exanpl e:

Comrent s:

C(++) as a "portable assenbler”
This one is my 40 pound soap box!

I laugh every tinme | read where soneone refers to C (or C++)

as a portable assenbler. It’s NOT! |It’'s definitely not
an assenbler, and it’s not terribly portable. It is not
an assenbl er because the | anguage | acks a direct way to do
i ndexed local junmps. I|I'monly famliar a couple of

assenbly | anguages, but | sure thought that indexed |oca
junps were a part of every assenbler. That is, the
ability (within a procedure) to junp to a code | ocation
specified within another register or nenmory | ocation

jrp[cd_ptr] ;execution junps to where cd_ptr is pointing.

C(++) is not very portable either because the standard
headers contain no standard macros addressi ng how i ntegers
and structures are stored and accessed on varying

pl at f or ns.

The issue of indexed |local junps could be easily fixed in
C(++) by allowing pointers to |abels.

void exanple(int arg)
{
label *IPtr[3] = { LABEL1l, LABEL2, LABEL3 };
/* "label’ is a new keyword. In the classic C sense, the
/* label nane is really a pointer to a code |ocation
[* C(++) already pernits forward referencing in this
/* sense. That is, you can 'goto’ a |abel that hasn't
/* been previously declared. Sone environnents insist on
/* defaulting to "const’ to prohibit self nodifying code.

arg = func(arg);

/* arg gets distorted in a way that's */
/* too conmplex for the conpiler to be */
/* able to predict all possible values. */

goto IPtr[arg]; /* The code author understands */
/* the possible val ues. */

LABEL1: /* do sonme stuff */
LABEL2: /* do sone stuff */
LABEL3: /* do sone stuff */

return;

}

| admit that in the exanpl e above, a switch/case statenent
woul d do the trick. The problemw th switch is that sone
conpilers sinply convert switch statenents into a |ong
line of very slowrunning if statements. |n sone cases,
as |'’ve tried to allude to above, the conpiler sinply
can’t understand what possible values the arg may take on
and thus is forced into translating the code into if

*/
*/
*/
*/
*/
*/

st at enent s. It’d be incorrect translation to do
ot her wi se!

The real utility of this proposed construct is when the
code witer KNOAS the possible values the index can assune
and the compiler sinply can’t figure themout. | have
been very frustrated (and | suspect, so have a | ot of

ot her performance hounds who default to witing in

assenbl er) by the lack of indexed local junps in the C(++)

| anguage.

Now regarding portability. In order to take advantage of
the I ow | evel tools which C(++) provides for us, we need a
whol e suite of portability nmacros for the integers. |I'm

not sure we can do nmuch with the floating points since
they are allowed to change representati on while running.

#012#
Exanpl e: #defi ne CHAROI NSHRT 1 /* least significant char in a */
/* short when the short is treated */
/* as an array of chars. */
#define CHARLINSHRT O /* next nost significant */
#define CHAROINLONG 7 /* least significant char in long */
#define CHARLINLONG 3 /* next nost significant */
#define CHARZINLONG 5 /* even nore significant */
#define CHAR3INLONG 1 /* continuing in significance */
#define CHARAINLONG 6 /* ditto */
#define CHARSINLONG 2 /* ditto */
#define CHARGINLONG 4 /* ditto */
#define CHAR7INLONG O /* nost significant char in long */

/* macro to access the Nth least significant char in a |long */
#define N hCHARINLONG N, longarg) \
((char) (& ongarg) + CHAR ## N ## | NLONG

Make simlar macros for all the other integer types.

If it's decided that significance should be indicated in
a different order, just reverse the order.

If an environnent won’t support such disection of the
| arger types, then just don’t define them

We also need simlarly clever nmacros which indicate how
the various types align within structures, which bit

(least or nost significant) is the sign bit, is zero
represented by all bits set to zero or sonething else, how
bitfields are ordered, as well as any other environnent
specific issues, including everything which the standard

defines as "inpl enentation dependent”. A full suite of
these nacros will make portable programm ng a MJCH easi er
j ob.

-> Rej ect ed.
-> Request for an extension
27- Comments from Ajay Kandar / Lehman Brothers
Recei ved by emil
emai | address: aj ay@ ehman. com
Was conment T31 in the post-Mnterey mailing docunent.

Make the destructor of a class inplicitly virtual if the class has
any other virtual functions.

Di scussi on

*) Forgetting to nmake the destructor of a polynorphic class virtua
is a conmmon m stake nade both by inexperienced and experienced C++
programers. This nakes it harder to use the | anguage, and the
resulting problenms are often difficult to debug and fix. Accepting
this proposal elimnate an unnecessary source of errors.

*) There are no backward conpatibility issues to worry about. The
behavi or of deleting an object using a pointer to a static type
without a virtual destructor is currently specified to be undefined
if the dynamic type of the object is different fromthe static

type.

*) There is no reason for wanting *not* to execute all the appropriate
destructors.

*) There woul d be no change to the I ayout of an object because the
destructor would be made inplicitly virtual only if the class had
at |l east one other virtual function.

*) A (positive) side effect of the change would be that existing
erroneous code which currently has undefined behavi or woul d start
behavi ng properly.

*) I't would be very easy to nodify conpilers to inplenent the new
behavi or.

-> Still under consideration

28- Comments from Darin Adler / General Magic
Recei ved by enai
emai | address: darin_adl er @ennagi c. com

1. I was able to make one program nuch faster by specializing
iter_swap to use the swap menber function of vector. |Is there
some way to do this generally and automatically, instead of doing
it explicitly for each specific type of collection? | did

sonet hing like this:

inline void iter_swap(collection *a, collection *b) {
a- >swap(*b);
}

Wth this speedup, sorting a vector of vectors is a lot faster and
does a lot less menory allocation.

-> Already present in the standard.

-> Partial specializations of the non-nenber tenplate swap() are

-> provided for all containers that define a swap() menber (al

-> containers defined in Clause 23 except bitset).

2. | suggest you neke the random nunber generator used by

random shuffl e available in <functional> | would find it useful
Al so, to make them both generally useful in production prograns,
there should be a way to reseed the random nunber generator

-> Rej ect ed.

-> The conmittee previously rejected at | east one random nunber

-> generator proposal and does not wish to reopen the topic at this

-> tine.

3. | think operator!=in <utility> should be parameterized on the
types of both its argunments. This doesn’t hurt single-type use of
the tenplate function, and nakes it nore generally useful. Perhaps

the sane goes for operator>, operator<=, and operator>=, but for
those | amnot as sure.

tenpl ate <class T1, class T2>

i nline bool operator!=(const T1l& x, const T2& y) {
return ! (x ==vy);

}

If the operator!= tenplate is not paraneterized on the types of
both argunments, it prevents ne from naking ny own operator!=
tenplate that is paraneterized on both because it would conflict
with the singly paraneterized one in the standard headers. In the
current situation, | have to wite individual operator!= functions
for various conbi nations.

-> Rej ect ed.

4.

There should be an output iterator tenplate class that binds a
unary function with another output iterator. This would go into
the standard header <functional> Here is a possible definition
that |’'ve used in ny prograns:

tenpl ate <class Qutputlterator, class Transforne
class transformoutput _iterator : public
output _iterator {
typedef transform output _iterator
<Qutputlterator, Transforne self;
pr ot ect ed:
Qutputlterator out;
Transformfilter
publi c:
transformoutput iterator(Qutputlterator i,
Transformf)
out (i), filter(f) {}
sel f & operator=(const Transform:argunment_type&
val ue) {
*out++ = filter(val ue);
return *this;

sel f& operator*() { return *this; }
sel f& operator++() { return *this; }
sel f& operator++(int) { return *this; }

b
Here is a rough attenpt at doing the sane thing for binding an
input iterator with a function. | haven't used this one:

tenpl ate <class Inputlterator, class Transform
cl ass Di stance>
class transform.input_iterator
public input_iterator
<Transform :argument _type, Distance> {
typedef transform.input_iterator
<Inputlterator, Transform D stance> self;
friend bool operator==(const self& const selfg&)
pr ot ect ed:
Inputlterator in;
Transformfilter;
publi c:
transforminput iterator(lnputlterator I,
Transformf)
in(i), filter(f) {}
Transform:result_type operator*() const
{ return filter(*in); }
sel f& operator++() { ++in; return *this; }
self operator++(int) {
self previous = *this;
++i n;
return previous;

H

tenpl ate <class Inputlterator, class Transform class
Di st ance>
i nl i ne bool operator==
const transform.input_iterator
<Inputlterator, Transform Distance>& X,
const transform.input _iterator
<Inputlterator, Transform Distance>& y) {
return x.out == y.out;

}

These two are powerful, because there are already nmany ways to
conbi ne functions, which now can be easily attached to iterators.
-> Rej ect ed.
-> There are lots of interesting possible extensions to the STL. The
-> comittee doesn't want to consider themat this tine.

5. The use of *x++ in the standard |library nakes inefficient sone
algorithnms with sone kinds of iterators. To inplenent the
post-increnent operator, sone iterators have to keep a | ocal copy
of the old value around. Oten this leads to extra conplexity and

work. The algorithnms derive little benefit fromthe freedomto use

the post-increment form | was able to nmake a neasurabl e
i nprovenent in the speed of ny programby altering some functions
in a copy of <algo.h> to use a separate pre-increnent instead of
usi ng the *x++ dereference/ post-increnent conbination
-> Rej ect ed.
-> After substantial discussion it was decided that the *x++ sequence is
-> used too frequently to be elim nated.

6. | have used the streans library for a nunber of applications. In

the progranms | have been witing, the design of the functions naned

getline has caused sone trouble. Wen getline is called and the

stream has a line that contains no text, ios::failbit is set on the

i nput stream \ile consistent with the behavior of the simlar
function naned get, the behavior is quite inconvenient. To

illustrate, here is a fairly sinple function that copies a file,
reading and witing a line at a tinme, adding a trailing newline if
it is mssing:

i stream& copy_lines(istream& from ostrean& to) {
string |ine;
while (true) {
getline(from Iine);
to << line << "\'n";
if (fromeof() || frombad())
br eak;
if (fromfail())
fromclear(fromrdstate() &
~ios::failbit);

return from

}

The conplexity of the function is due to the unwanted fail state
caused by enpty lines. A sinpler function is possible if getline
does not set the fail bit.

i stream& copy_lines(istream& from ostrean& to) {
string |ine;
whil e (proposed _getline(from I|ine))
to << line << "\n";
return from

This sinpler behavior seens |like a better definition for the
getline function. It's easy to define today's getline in terns of
the proposed one and the other way around, it’s just that the
proposed getline is nmore useful in nany contexts. Enpty lines
shoul d not require special code to handle themit’'s alnost |ike
having a nunmeric formatting routine that fails when asked to format
t he nunber O.

It’'s possible to express today's getline in terns of ny
proposed getli ne:

i stream& proposed_getline(istream& stream
string& line) {
todays_getline(stream line);
if (streameof() || stream bad())
return stream
if (streamfail())
streamcl ear(streamrdstate() & ios::failbit);
return stream

}
i stream& todays_getline(istream& stream string& |ine)
{
proposed_getline(stream 1line);
if (streamgood() && line.enmpty())
stream setstate(ios::failbit);
return stream
}
One drawback | can see is that this makes the getline function
different fromthe get function in an additional way. |In practice,

I don’t think that this outweighs the greater conveni ence of the
function for clients.

I"ve focused on the version of getline for the string class, but |
believe sinilar argunents apply for getline into null-term nated
buffers. The fail state would always nean that there are too many
characters for the buffer, rather than sonmetines indicating an
enpty line.

-> Still being considered

7. bitset::set should take a bool as its second paraneter instead of
an int. Wth the current definition, if sizeof(int) is not the same
as si zeof (long), passing a non-zero |ong that becones zero when
cast toint will set the bit to 0. |If the function is defined to
take a bool instead, the bit would be set to 1, which makes sense
since the value of the long is non-zero.

-> Accepted

29- Comments from Jack Reeves / Dow Jones Tel erate Systenms Inc.
Recei ved by enail
emai | address: jack@ x.com

1. Suggestion - the container classes which provide a function
"reserve()" (currently "basic_string and 'vector’) also need to
provide the dual function - sonething |like "rel ease_excess()" or
"shrink to fit()".

Di scussion -
The project | amcurrently working on uses STL quite extensively.
We are using both the ObjectSpace STL<Tool kit> and the versi on of
STL that works with the G++ conpiler. |In one part of our library we
have a set of classes that represent various data types that are
used t hroughout the rest of the system Sonme of these classes are
t hensel ves containers. Naturally, we have inplenented them using

the appropriate STL classes. One of the nost used of these is a
Table. This consists logically of rows and columms. It is
i npl emented as a vector of vectors.

We have one table that represents a screen of data -- a 80 x 20

character matrix. In the inplementation, this becane a vector of 20

el ements, each a pointer to a vector containing a single pointer to
a string. In all, we expected this data elenent to use | ess than
2Kbytes of nenory. Wiat we found was that it used over 80Kbytes.

Thi s was consi dered excessive overhead, even on a Unix system Upon
i nvestigation, we discovered that the follow ng exanple all ocates 4K

of menmory for the vector.
vector row, /1 allocates no storage for row
row. push_back(el enent _ptr); // allocates 4K

We wor ked around this problemby changing to the foll ow ng

vector row, /1 allocates no storage

row reserve(l); // allocates (but does not initialize) 1
el enent

row. push_back(el enent _ptr);
It is still the case however, that whenever a vector has to be

reall ocated, it doubles the nenory used. This led us to inplenent a

"shrink to fit()" function for those types based upon vector. This
works, but it forced us to switch fromhaving a vector as a data
menber of the class, to having a vector pointer, since

shrink_to _fit() has to create a copy of the vector

Ideally, "shrink to fit()" should be a nenber of the container
class itself. Wth appropriate support fromthe underlying nmenory
nmodel (reallocate in place), the operation could be constant tine.
Using typically available facilities, "shrink _to fit()" will still
have to reallocate the vector and copy it, but it could do this
using low I evel nencpy function instead of the high | evel copy
constructors invoked by having the using programreallocate the
vector. It is nmy understanding that the resize() function does not
provi ded the needed capability, since its task is to change the
"size" of the container, not its "capacity."

-> Rej ect ed.

-> This type of function (and several variants) were discussed in
-> detail by the comrittee. It was decided not to enbed too nuch
-> "optimzation advice" about menory nmanagenent in the interface
-> of vector (and basic_string). Exactly how nuch, if any, "excess"
-> capacity is allocated by reserve() is not specified by the

-> standard. Allocation of excess nenory is purely a property

-> of the particular inplenentation

2. Suggestion - the container classes need specializations defined

for pointer elenments. For exanple -

tenpl at e<cl ass T> cl ass ptrvector

tenpl at e<cl ass T> class ptrlist

tenpl at e<cl ass T> cl ass ptrdeque

tenpl at e<cl ass T> cl ass ptrset

tenpl at e<cl ass T> cl ass ptrmap

tenpl ate<class T> class ptrnultiset

tenpl at e<cl ass T> class ptrnulitmp
Instantiated versions would have a inplenentations based upon the
base class instantiated for void*. The tenplate would have to be
instantiated with a pointer type (or something which could be
converted to/from void*).

Di scussion -

In our current project, we are using STL extensively. O sone 22
containers used in the base library alone, 12 are sone variant of
containers for pointers. This is hardly surprising -- in any large

system the need to deal with objects polynmorphically will nean that
nmost objects are in fact either references or pointers. Wile | am

aware that the STL goes to lengths to be efficient, there stil
tends to be a lotof code replication when there are a dozen
different containers instantiated, all of which could be inplenented
with the same code. While the container classes in the current
version of the draft standard library are certainly nmuch richer than
just the dynarray and ptrdynarry that were first proposed, | regret
the absence of the ptr-xxxx versions. | have found through
experience that creating a ptrxxxx tenplate class derived from
XXXX<voi d*> is non-trivial since it involves also creating all of
the appropriate iterator classes. | know that the standard library
is just a base library, and in general the user is left with
deriving the appropriate classes for his project. Nevertheless,
this is exactly the kind of thing that should only have to be done
once (preferably by sonebody else). This was obviously realized
when dynarray was proposed as part of the standard library. | am
not aware of any counter-arguments for including it with the STL.
It would certainly be useful for ny projects.

-> Rejected, request for an extension.

-> Defining separate containers for pointer types (and |ater, defining

-> partial specializations of the containers for pointer types) was

-> previously considered and rejected by the committee.

3. Request for clarification - in the basic_string class, the
description of the "size()" function states that it uses
traits::length. traits::length() in turn is described as being
simlar to ::strlen, i.e. it looks for the ternm nating ECS
character. Since ny assunption is that a "string" is just a
speci al i zed container for a sequence of characters, irrespective of
what the values of those characters are, then size() should not
depend up traits::length, but solely upon how many characters have
been put into the string. Stated another way, | would expect the
foll owi ng code fragnent to work

vector<char> vec(10, '\0’); // nake sure it is full of nulls
string str(vec.begin(), vec.size()); // copy the vector into

the string

assert(str.size() == vec.size()); [// they should have the
same # characters
If str.size() uses traits::length() then the assert will fail, and
it will not be at all clear what | would get with a call to
str.data();

-> Since this comment, the note in size() which nentions traits::|ength()
-> has been renoved.
30- Comments from Jack Reeves / Dow Jones Tel erate Systens Inc.

Recei ved by enail

emai | address: jack@ x.com

Was conment T33 in the post-Mnterey nmailing docunent.

1. The function basic_string<>::c_str() is prototyped as
const charT* c_str() const
The function returns a pointer to an eos() ternminated string. The

semantics are fine, | just think the prototype is in error. It think
the correct prototype should be
const charT* c_str() /1 not ’'const’ function

I will accept that adding a traits::eos() character in the undefined
portion of the reserved nenory outside of the valid string data is
phil osophically not a change of the state of the object and hence can
be allowed within a 'const’ menber function. However, adding this
"hidden’ character can cause the re-allocation of the interna

representation, and | draw the Iine at this silliness:
void f(const string s)
{
size_t before = s.capacity(); // const function
cout << s.c_str() << endl; /1 const function???
size t after = s.capacity(); /1 const function
assert (before == after); [l This should never fail!!

->
->
->
->

->

->

->
->
->

In general, | consider it unacceptable for a 'const’ function to
cause changes in the underlying state of the systemirrespective of
whet her that function changes the "contents" of the object as seen
through the interface of the abstraction. As such, | will accept
c_str() as a const nenber function only if it is defined to never
re-alloc the internal string. This could be done of course, by
insisting that the nenory reserved always contains roomfor the
eos(), but | think a better approach is to sinply change the

definition of c_str. | note that ny definition of what is "const"
may be different fromthe definition of 'const’ as used in the
| anguage standard. |If so, please point me to where the definition

is spelled out in the standard.

Rej ected. The externally observabl e semantics of the const nenber
c_str() are exactly those desired. Requiring an inplenentation to
behave in the ways descri bed woul d be over-constraining. Nowhere
in the definition of capacity() does the Draft state that an

i mpl ementation is required to return the same val ue on consecutive
calls.

The function basic_string<>::data() is prototyped as

const charT* data() const
and defined to return a null pointer if size() == 0 otherw se
c_str(). | believe this is a ms-wrding. data() should return the
appropriate pointer (or null) but should not be required to return an
eos() termnated string. There are two reasons for this. (a) If
data() does not return c_str() it can truly be a ’'const’ nenber
function, and this is good (see 1. above). (b) Perhaps nore
importantly, there is no need for data() to termnate the string. In
usi ng several different versions of string class, nost of which cone
close to the standard, we have never found it necessary to have a
function that has the semantics as data() is now defined to have. W
have found nmany uses for a function (’const’ function) that gives
access to the internal data pointer. In fact, we use strings in
numer ous situations where '\0" is a valid data elenment and so
term nating such strings is a waste of time since they are al ways
dealt with in conjunction with their |ength().
Accept ed.

The | atest version of the standard adds sonme new nenber functions to
class basic_string. There is now a size() function and severa

other changes that bring strings nore in parallel with the newy
defined containers. | have previously pointed out that size() is
defined in terns of traits::length() which is in turned defined
semantically to be the sane as

c:strlen(). | feel sure this is an error. | note that function
length() is defined to be the same as size(). | presune that
length() is retained for conpatibility with previous versions of
string (and may be deprecated in the future). | wonder if maybe what
was really desired was that basic_string::length() should return
traits::length() if this is less than size(), size() otherw se. |
really doubt it, but thought | would ask

The definition of size() which nmentioned traits::length() has been
changed. The nenber length() returns the same val ue as the nenber
size(). The nmenber length() was retained for conpatibility with
existing practice. It is not currently being considered for
deprecati on.

I note that the latest version of the standard changed t he order of
the paraneters for one of the constructors from

basic_string(charT ¢, size_type n = 1, Allocator& = Allocator())
to

basic_string(size type n, charT ¢, Allocator& = Allocator())
| presume the latter is correct, but wanted to verify. W have hit
at one occasi on where an ol der program had

string s(' @, 1);

and this continued to conpile correctly with the new header file (we
are using G++), but silently changed its neaning.
-> The latter is correct.

5. | have already suggested the follow ng, but will suggest it again,
as | consider it inmportant. Cass basic_string has a reserve()
function, but no release() function. It really needs a rel ease()
(or shrink to fit()) function. Partly this is just good design
(pardon my arrogance) -- the reserve() function is used to indicated
an anticipated increase in the size of the string, and the rel ease()
function is its opposite and is used to indicate that no nore changes
are anticipated and the excess reserved nenory can be given back to
the system Partly, reserve() and rel ease() can be used with a
special allocator that deals with rel ocatable nmenory such as the

original Macintosh or Wndows -- reserve() would do a | ock and
rel ease() could unlock (as well as shrink). | note two aspects about
release(). The first is that it could interact sonmewhat poorly with
c_str().
void f(string s)
{
s.rel ease(); /1 shrink to fit
cout << s.c_str() << endl; /1 trying to re-alloc the string

/1 to size()+1 might cause it
/1 to have quite a bit of slop

I woul d consider this annoying, but sonmething that could be Iived
with. However, an alternative provides a solution to ny desire for a
rel ease() function and this problem-- redefine the semantics of
reserve() to allowit to function as a release() function al so.
Thusly -
after reserve(size_type n) ::=
if (n <size()) then capacity is set to size()
otherw se capacity() will equal n.
Frankly, this would be ny preference. Thus the exanple above would
becone
void f(string s)
{
s.reserve(s.size()+1);
cout << s.c_str() << endl

with the assurance that the actual nenory used is the mininum
necessary. The reserve() function could be prototyped as
void reserve(size_type res_arg = 0)
where the default argunment woul d all ow the use of
s.reserve() to be semantically equivalent to shrink-to-fit.
-> Still under consideration

6. Al of the above discussion about release() applies equally to the
vector<> class. In fact, | like the new reserve() idea so nuch
think 1"l go inplenent it in our string and STL libraries and | et
you know how it conmes out. Let ne know what you think

-> Rej ect ed.

31- Conmments from Scott Schurr / Integrated Measurenent Systens, |nc.
Recei ved by enai
emai | address: scotts@mns.com
Was comment T32 in the post-Mnterey nailing docunent.

Exception specifications should be check for correctness at
compile time. The current exception definition prevents conpiler
witers fromchecking for properly constructed exception hierarchies.

-> Rej ect ed.
-> Help: Bill G bbons or Bjarne Stroustrup
-> what were the argunments presented in the extensions Ws that led to

-> the decision of not having exception specifications check at conpile
-> tine?

EE R R R R I R R R I I I R R R R R S R I R R R R I R R R R R R R S S

Unof ficial Comments
EIR IR I b I S R I I I I b I R I R I I I I IR I I R I I I R I R I I R I R I I I I I I I R I R R b I b R I I b I b I b b I I I I b I I O

U2- Comment from Jerry Anderson

I would recommend the addition of a keyword that served the
foll owi ng purpose:

When a function has been over-ridden in a sub-class and it is
necessary to call the base class inplenentation of the function also.
A keyword denoting the base class would be useful instead of the
explicit reference that is now required

voi d MySubd ass:: SoneFuncti on(voi d)
{

N?Basea ass: : SomeFunction();

}

Repl ace with:

voi d MySubd ass: : SoneFuncti on(voi d)

{
béée->80neFunction();
}
-> Rej ect ed.
-> Already considered and rejected - inherited keyword.

-> \When the keyword was rejected, the comrittee felt that a uniform
-> coding style such as

-> typedef base inherited;

-> coul d be used adequately.

U3- Comment from Steve Meirowsky / |FR Systens Inc.
Recei ved by email
emai | address: steve. neirowsky@w s. com
Was conment T14 in the post-Mnterey nailing docunent.

I think C++ should have one or two new nuneric types that are
integral as part of the language. A 64bit and 128bit | ongs.

think the 64bit | ongs should be mandatory! Al so please choose sone
easy to renmenber nane |ike dlong/qglong or |ong64/1 ongl28.

-> Still under consideration

U4- Comment from Steve Meirowsky / |IFR Systens Inc.
Recei ved by enai
emai | address: steve. neirowsky@w s. com
Was comment T14 in the post-Mnterey nuailing docunent.

[First wish is the same as U3].

The second wish list itemis ranges on 'case’ statements sinmilar to
Pascal . For exanple, 'case 9..49:'. W really don't care about the
met hod. . .just that we have it in the |anguage.

-> Rej ect ed.

-> Request for an extension.

U6- Comment from Boris Rasin
Recei ved by emil
emai| address: brasin@etvision.net.il
Was conment T18 in the post-Mnterey nmailing docunent.

Subj ect: Tenpl ate argunment deduction [tenp. deduct].
Proposed addition: Cass tenplate argunent deduction.

In a call to class tenplate constructor, class tenplate argunents
can be deduced from constructor argunments, under the rules for
function tenplate argunent deducti on.

Exanpl e:
class Mutex { ... };
cl ass Semaphore { ... };
tenpl ate <class T> class Lock { ... };
Mt ex M

Senmaphore S;
Lock L1 (M; // Lock<Mutex> L1 (M;
Lock L2 (S); // Lock<Semaphore> L2 (S);

-> Rejected.
-> Request for an extension.

U7- Comrent from Greg Wei dnan / Kaman Sci ences Corp.
Recei ved by email
emai | address: wei dman-al x1@anman. com
Was conment T23 in the post-Mnterey nailing docunent.

Poi nt 1:
| magi ne:

class cA{ ... };
class ¢cB : public cA{...};

mai n()

cB *pB = new cB [10];

CcA *pA = (cA *)pB;

}
If cA and cB are different sizes, then there is no conveni ent way
of accessing other than the first elenent of pA It would have been
nice to say pAll] and gotten the sane address as pB[1l], but this is
not the case. | understand that this would inply checking the

virtual table for each of the elenents in the pA array to determ ne
their sizes, kind of destroying the default definition of [], but if
| define cA::operator[](int);, then | need to access this using
ei t her

(*pA[1];
or
PA[O] [1];
neither of which is particularly convenient.

-> Rej ect ed.
-> Request for an extension.

Poi nt 2:

The | anguage is really unbelievably cluttered. As long as C++
remains a superset of C, this will be true. It seens, however, that
once one has defined the concept of "Reference", then one can pretty
much do away with the concept of "Pointer," since both are stored as
pointers within the object code. This would take C++ well away from
C, but it would make the | anguage significantly less cluttered.

-> Rej ect ed.
-> breaks C conpatibility.

Poi nt 3:

I have run across sonme conpilers that give "Anachroni sm' warni ngs
when encountering

delete [n] pX
These conpilers seemto feel that

del ete pX;
shoul d be sufficient, although they all fail to call cX :~cX() nore
than once if this so-called "Anachronisnm is elimnated. A clear
standard on whether the delete [n] structure is needed, and whet her
mul tiple destructors should be call ed would be quite hel pful

-> Rej ect ed.

-> The correct syntax to delete arrays is:

-> delete[] pX

-> which will cause the appropriate nunber of destructors to be call ed.

Ug, W & U100 - Comment fromJ. Barreiro, R Fraley, and D. Misser
Recei ved by emil
emai | address: nusser @s. rpi.edu
Was conment T24 in the post-Mnterey nmailing docunent.

"Hash Tabl es for the Standard Tenpl ate Library"

-> Rejected
-> Request for an extension

Ul2- Comments from Jon Hoyl e / Eastman Kodak Conpany
Recei ved by emil
emai | address: JonHoyl e@ol . com
Was conment T24 in the post-Mnterey nmailing docunent.

1. For tenplates, allow switching on the type. For exanple:

tenpl ate <class T>
voi d SonmeFunction(T theCbject)

{
switch (T)
case int:
case short:
DoSorret hi ng() ;
br eak;

case doubl e:

case anot her Type:
DoSonret hi ngEl se() ;
br eak;

defaul t:
DoEver yt hi ngEl se();
br eak;

This allows for fine tuning in tenplated functions.
-> Rej ect ed.
-> Request for an extension

2. Define an operator @as an additional binary operator that can be
used for operator-overloading. Currently, there is no way to

overload an operator for elementary types. Now this could allow us to
define, say, exponentiation by:

int operator@int x, int y)
if (y ==0) return 1;
if (y >0) return x * operator@x, y-1);

return (1/x)*operator@x, y+1);
}

-> Rej ect ed.
-> Request for an extension.

I would also |ike to comend you on your decision to add a bool ean
type to the standard. Currently, we always run into the probl em of
defining TRUE as 1, and conparing sonmething that is true but not 1.
For exanpl e,

if (x & 0x007F == TRUE)

/1 this always fails

}

| also like the idea of defaulting tenplated types:

int>

tenplate <class T
class Myd ass<T>

{

}
MyC ass<> theCl ass; [/ Default type is int

[* etc. */

